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Abstract

Qualitative models are predictive models which describe how changes in values
of input variables a�ect the output variable in qualitative terms, e.g. increasing
or decreasing. We describe Padé, a new method for qualitative learning which
estimates partial derivatives of the target function from training data and uses
them to induce qualitative models of the target function. We formulated three
methods for computation of derivatives, all based on using linear regression on
local neighbourhoods. The methods were empirically tested on arti�cial and
real-world data. We also provide a case study which shows how the developed
methods can be used in practice.
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1. Introduction

People most often reason qualitatively. For example, playing with a simple
pendulum, a �ve year old child discovers that the period of the pendulum in-
creases if he uses a longer rope. Although most of us are later taught a more
accurate numerical model describing the same behaviour, T = 2π

√
l/g, we keep

relying on the more �operational� qualitative relation in everyday's life. Still,
despite Turing's proposition that arti�cial intelligence should mimic human in-

telligence, not much work has been done so far in trying to learn such models
from data.
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We can formally describe the relation between the period of a pendulum T ,
its length l and the gravitational acceleration g as T = Q(+l,−g), meaning
that the period increases with l and decreases with g. Di�erent de�nitions of
qualitative relations are discussed in related work. We will base ours on partial
derivatives: a function f is in positive (negative) qualitative relation with x over
a region R if the partial derivative of f with respect to x is positive (negative)
over the entire R,

f = QR(+x) ≡ ∀x0 ∈ R :
∂f

∂x
(x0) > 0 (1)

and
f = QR(−x) ≡ ∀x0 ∈ R :

∂f

∂x
(x0) < 0. (2)

Qualitative models are predictive models which describe qualitative relations
between input variables and a continuous output, for instance

if z > 0 ∧ x > 0 then f = Q(+x),

if z < 0 ∨ x < 0 then f = Q(−x).
For sake of clarity, we omitted specifying the region since it is obvious from the
context.

In this paper we propose a new, two-step approach to induction of quali-
tative models from data. Let the data describe a sampled function given as
a set of examples (x, y), where x are attributes and y is the function value.
In the �rst step we estimate the partial derivative at each point covered by a
learning example. We replace the value of the output y for each example with
the sign of the corresponding derivative q. Each relabelled example, (x, q), de-
scribes the qualitative behaviour of the function at a single point. In the second
step, a general-purpose machine learning algorithm is used to generalize from
this relabelled data, resulting in a qualitative model describing the function's
(qualitative) behaviour in the entire domain.

Such models describe the relation between the output and a single input
variable in dependence of other attributes. For instance, we can model the
conditions (e.g. public debt, taxation, in�ation rate) at which an increase of in-
terest rates will increase/decrease the unemployment. To describe the in�uence
of multiple inputs (e.g. the e�ect of interest rates and of in�ation and taxation
on unemployment) we need to induce multiple models.

The paper includes three major contributions. The �rst one is the idea
of transforming the problem of learning qualitative models to that of learning
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ordinary predictive models. Second, we present a new method called Padé1

for computing partial derivatives from data typical for machine learning. We
show three ways of computing the derivatives, all based on variations of local
linear regression. Finally, we provide an extensive experimental evaluation of
the proposed setup.

2. Related Work

The beginnings of the �eld of qualitative reasoning go back to early work
done outside AI. Je�ries and May [1, 2] introduced qualitative stability in ecol-
ogy, whereas Samuelson [3] discussed the use of qualitative reasoning in eco-
nomics. The papers by Forbus [4], de Kleer and Brown [5], and Kuipers [6]
describe approaches that became the foundations of much of qualitative reason-
ing work in AI. Kalagnanam et al. [7, 8, 9] contributed to the mathematical
foundations of qualitative reasoning.

There are a number of approaches to qualitative system identi�cation, also
known as learning qualitative models from data. Most of this work is con-
cerned with the learning of QDE (Qualitative Di�erential Equations) models.
One approach is to translate a numerical system's behaviour in time into a
qualitative representation, and then check which QDE constraints (or QSIM-
type constraints [6]) are satis�ed by the qualitative behaviour. The resulting
constraints constitute a qualitative model. Examples of this approach are the
programs GENMODEL [10, 11], MISQ [12, 13] and QSI [14]. A similar ap-
proach can be carried out with a general purpose ILP system (Inductive Logic
Programming) to induce a model from qualitative behaviours, which enjoys
the advantages of the power and �exibility of ILP. This approach was devel-
oped in [15, 16, 17]. Dºeroski and Todorovski developed several approaches to
discovering dynamics. QMN [18] generates models in the form of qualitative dif-
ferential equations. LAGRANGE [19] and LAGRAMGE [20] can describe the
observed behaviour in the form of di�erential and partial di�erential equations
respectively. SQUID [21] �nds models in terms of semi-quantitative di�erential
equations. Gerçeker and Say [22] �t polynomials to numerical data and use
them to induce qualitative models. We believe that their algorithm LYQUID
can also be used in static systems although they experiment only with dynamic
systems.

1An acronym for �partial derivative�, and the name of a famous French mathematician
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Qualitative models of dynamic systems are not necessarily based on QDE.
For example, the KARDIO model of the heart [23] uses symbolic descriptions
in logic instead. QuMas [24, 25] learned such models from example qualitative
behaviours in time and used a kind of ILP for that.

In this paper we only consider static systems. Systems that learn dynamic
qualitative models can, to some extent also learn static models by simply not us-
ing the functionality for handling temporal dependencies. However, since such
systems are intended for dynamic models, their capability in handling static
relations are limited, for example to searching for only those static constraints
that hold over the whole problem space. The QUIN algorithm [26, 27, 28]
is speci�cally intended for learning qualitative models of static systems, and
is therefore the most relevant to the present paper. QUIN induces qualitative
trees which are similar to classi�cation trees but have di�erent leaf nodes. The
leaves of a qualitative tree contain qualitative constraints (e.g. z = M+−(x, y),
meaning that z increases with x, decreases with y and depends on no other
variables). QUIN constructs such trees by computing the qualitative change
vectors between all pairs of points in the data and then recursively splitting the
space into regions which share common qualitative properties, such as the one
given above. Despite similarities, Padé and QUIN are signi�cantly di�erent in
that Padé acts as a preprocessor of numerical data and can be used in com-
bination with any attribute-value learning system. Padé computes qualitative
partial derivatives in all example data points, and these derivatives become class
values for the subsequent learning. For example, Padé combined with a decision
tree learner would produce qualitative trees similar to those induced by QUIN.
However, Padé combined with a rule learner, say, produces a model in the form
of "qualitative rules". The main algorithmic di�erence between the two systems
is that Padé computes quantitative and qualitative partial derivatives in every
example point, whereas QUIN computes the degree of consistency of a subre-
gion of numerical data with (essentially) every possible qualitative monotonicity
constraint.

Padé di�ers from all the above methods in being, to our knowledge, the only
algorithm for computing (partial) derivatives on point cloud data. Another
important di�erence between Padé and above mentioned algorithms is also that
Padé is essentially a preprocessor while other algorithms induce a model. Padé
merely augments the learning examples with additional labels, which can later
be used by appropriate algorithms for induction of classi�cation or regression
models, or for visualization. This results in a number of Padé's advantages.
For instance, most other algorithms for learning qualitative models only handle
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numerical attributes. Since Padé can be combined with any machine learning
method, the learner can also use discrete attributes at no extra cost.

Outside arti�cial intelligence, there are several numerical methods for com-
putation of derivatives at a given point. Such numerical derivatives could be
used for modelling qualitative behaviour. Unfortunately, numerical di�erentia-
tion computes the function value at points chosen by the algorithm, while we
are limited to a given data sample.

3. Computation of Partial Derivatives

We will denote a learning example as (x, y), where x = (x1, x2, . . . xn) and
y is the value of the unknown sampled function, y = f(x).

We will introduce three methods for estimation of partial derivative of f at
point x0. The simplest one assumes that the function is linear in a small hyper-
sphere around x0 (Figure 1a). It computes locally weighted linear regression on
examples lying in the hyper-sphere and considers the computed coe�cients as
partial derivatives. The second method, τ -regression, computes a single partial
derivative at a time. To avoid the in�uence of other arguments of the function,
it considers only those points in the sphere which lie in a hyper-tube along the
axis of di�erentiation (Figure 1b). The derivative can then be computed with
weighted univariate regression. Finally, the parallel pairs method replaces the
single hyper-tube with a set of pairs aligned with the axis of di�erentiation
(Figure 1c), which allows it to focus on the direction of di�erentiation without
decreasing the number of examples considered in the computation.

3.1. Locally weighted regression

Let N (x0) be a set of examples (xm, ym) such that xmi ≈ x0i for all i
(Figure 1a). According to Taylor's theorem, a di�erentiable function is approx-
imately linear in a neighbourhood of x0,

f(xm) = f(x0) +∇f(x0) · (xm − x0) +R2. (3)

Our task is to �nd the vector of partial derivatives, ∇f(x0). We can solve this
as a linear regression problem by rephrasing (3) as a linear model

ym = β0 + βT(xm − x0) + εm, (xm, ym) ∈ N (x0), (4)

where the task is to �nd β (and β0) with the minimal sum of squared errors εm
over N (x0). The error term εm covers the remainder of the Taylor expansion,
R2, as well as noise in the data.
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Figure 1: The neighbourhoods for locally weighted regression, τ -regression and
parallel pairs.

The size of the neighbourhood N (x0) should re�ect the density of examples
and the amplitude of noise. Instead of setting a prede�ned radius (e.g. ||xm −
x0|| < δ), we consider a neighbourhood of k nearest examples and weigh the
points according to their distance from x0,

wm = e−||xm−x0||2/σ2

. (5)

The parameter σ2 is �tted so that the farthest example has a negligible weight
of 0.001.

This transforms the problem into locally weighted regression (LWR) [29],
where the regression coe�cients represent partial derivatives,[

β0

β

]
= (XTWX)−1XTWY, (6)

where

X =

1 x11 . . . x1n
...

... . . . ...
1 xk1 . . . xkn

 W =

w1 0 · · ·
0

. . .
... wk

 Y =

y1
...
yk

 (7)

The computed β estimates the vector of partial derivatives ∇f(x0).
As usual in linear regression, the inverse in (6) can be replaced by pseudo-

inverse to increase the stability of the method.
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3.2. τ -regression

The τ -regression algorithm di�ers from LWR in the shape of the neighbour-
hood of the reference point. It starts with κ examples in a hyper-sphere, which
is generally larger than that for LWR, but then keeps only k examples that lie
closest to the axis of di�erentiation (Figure 1b). Let us assume without loss of
generality that we compute the derivative with regard to the �rst argument x1.
The neighbourhood N (x0) thus contains k examples with the smallest distance
||xm−x0||\1 chosen from the κ examples with the smallest distance ||xm−x0||,
where || · ||\i represents the distance computed over all dimensions except the
i-th.

With a suitable selection of κ and k, we can assume xm1 − x01 � xmi − x0i

for all i > 1 for most examples xm. If we also assume that partial derivatives
with regard to di�erent arguments are comparable in size, we get ∂f/∂x1(xm1−
x01) � ∂f/∂xi(xmi − x0i) for i > 1. We can thus omit all dimensions but the
�rst from the scalar product in (3):

f(xm) = f(x0) +
∂f

∂x1

(x0)(xm1 − x01) +R2 (8)

for (xm, ym) ∈ N (x0). We again set up a linear model,

ym = β0 + β1(xm1 − x01) + εm, (9)

where β1 approximates the derivative ∂f
∂x1

(x0). The task is to �nd the value of
β1 which minimizes error over N (x0).

Examples in N (x0) are weighted according to their distance from x0 along
the axis of di�erentiation,

wm = e−(xm1−x01)2/σ2

, (10)

where σ is again set so that the farthest example has a weight of 0.001.
The described linear model can be solved by weighted univariate linear re-

gression over the neighbourhood N (x0),

∂f

∂x1

(x0) = β1 =

∑
xm∈N (x0)wmxm1ym∑
xm∈N (x0)wmx

2
m1

. (11)
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3.3. Parallel pairs

Consider two examples (xm, ym) and (xl, yl) which are close to x0 and aligned
with the x1 axis, ||xm−xl|| ≈ |xm1−xl1|. Under these premises we can suppose
that both examples correspond to the same linear model (9) with the same
coe�cients β0 and β1. Subtracting (9) for ym and yl gives

ym − yl = β1(xm1 − xl1) + (εm − εl) (12)

or
y(m,l) = β1x(m,l)1 + ε(m,l), (13)

where y(m,l) = ym−yl and x(m,l)1 = xm1−yl1. The di�erence ym−yl is therefore
linear with the di�erence in the attribute values xm1 and xl1

Coe�cient β1 again approximates the derivative ∂f
∂x1

(x0). Note that the
model has no intercept term, β0.

To compute the derivative using (12) we take the spherical neighbourhood
like the one from the �rst method, LWR. For each pair we compute its alignment
with the x1 axis using a scalar product with the base vector e1,

α(m,l) =

∣∣∣∣ (xm − xl)
Te1

||xm − xl|| ||e1||

∣∣∣∣ =
|xm1 − xl1|
||xm − xl||

(14)

We select the k best aligned pairs from κ points in the hyper-sphere around x0

(Figure 1c) and assign them weights corresponding to the alignment,

w(m,l) = e−α
2
(m,l)

/σ2

, (15)

with σ2 set so that the smallest weight equals 0.001.
The derivative is again computed using univariate linear regression,

∂f

∂x1

(x0) = β1 =

∑
(xm,xl)∈N (x0)w(m,l)(xm1 − xl1)(ym − yl)∑

(xm,xl)∈N (x0)w(m,l)(xm1 − xl1)2
(16)

4. Experiments

We �rst performed an extensive set of experiments on arti�cially constructed
problems. These data sets are used to test Padé with respect to accuracy, the
e�ect of irrelevant attributes and the e�ect of noise in the data.

To assess the accuracy of induced models, we compute the derivatives and
the model from the entire data set. We then check whether the predictions of
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the model match the analytically computed partial derivatives. We de�ne the
accuracy of Padé as the proportion of examples with correctly predicted qual-
itative partial derivatives. Note that this procedure does not require separate
training and testing data set since the correct answer with which the prediction
is compared is not used in induction of the model. Where not stated otherwise,
experimental results represent averages of ten trials.

Another set of experiments was performed on real-world data. Since the
ground truth (the correct partial derivative) on such data sets is not necessarily
known, we can not compute the predictive accuracy of the model. In such cases,
stability is often used as a measure of quality of a machine learning method [30].
Stability measures the in�uence that variation of the input has on the output
of a system. The motivation for such analysis is to design robust systems that
will not be a�ected by noise and randomness in sampling.

In experiments with the parallel pairs method we reduced the number of
arguments to be �tted by setting κ = k. Since the �rst batch of experiments on
arti�cial data sets suggested that parameter settings do not signi�cantly a�ect
the performance of methods, we use constant values in other experiments: we
use k = 20 for LWR and parallel pairs, and κ = 100 and k = 20 for τ -regression,
except for real-world data sets where we decreased κ to 50 due to a smaller
number of examples.

For LWR, we used ridge regression to compute the ill-posed inverse in (6).
We used C4.5 as reimplemented in Orange [31] for induction of qualitative
models. We preferred this algorithm over potentially more accurate methods,
like SVM, since one of our goals was to induce comprehensible models. Besides
that, most arti�cial data sets are simple enough to require only a single-node
tree or a tree with two leaves only. C4.5 was run with default settings except
where noted otherwise.

4.1. Accuracy on arti�cial data sets

We performed experiments with three mathematical functions: f(x, y) =
x2 − y2, f(x, y) = x3 − y, f(x, y) = sinx sin y. We sampled them uniform
randomly in 1000 points in the range [−10, 10]× [−10, 10].

Function f(x, y) = x2− y2 is a standard test function often used in [27]. Its
partial derivative w.r.t. x is ∂f/∂x = 2x, so f = Q(+x) if x > 0 and f = Q(−x)
if x < 0. Since the function's behaviour with respect to y is similar, we observed
only results for ∂f/∂x. The accuracy of all methods is close to 100% (Table 1).
Changing the values of parameters has no major e�ect except for τ regression,
where short (κ = 30 and κ = 50) and wide (k ≥ 10) tubes give better accuracy
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τ -regression
LWR Pairs κ = 30 50 70 100

k = 10 .991 .986 .948 .968 .971 .980
20 .993 .992 .929 .960 .972 .981
30 .992 .992 .909 .953 .969 .978
40 .993 .993 .950 .964 .974
50 .994 .993 .935 .961 .972

(a) Accuracy of qualitative derivatives.

τ -regression
LWR Pairs κ = 30 50 70 100

k = 10 .997 .993 .990 .993 .990 .991
20 .996 .995 .983 .991 .986 .991
30 .996 .994 .983 .987 .988 .993
40 .995 .995 .978 .978 .990
50 .998 .995 .977 .987 .991

(b) Accuracy of qualitative models induced by C4.5.

Table 1: Results of experiments with f(x, y) = x2 − y2.

while for very long tubes (κ = 100) the accuracy decreases with k. The latter
can indicate that longer tubes reach across the boundary between the positive
and negative values of x. Induced tree models have the same high accuracy.

Function f(x, y) = x3 − y is globally monotone, increasing in x and de-
creasing in y in the whole region. The function is interesting because its much
stronger dependency on x can obscure the role of y. All methods have a 100%
accuracy with regard to x. Prediction of function's behaviour w.r.t. y proves to
be di�cult: the accuracy of τ -regression is 50�60% and the accuracy of LWR
is just over 70% (Table 2). Parallel pairs seem undisturbed by the in�uence of
x and estimate the sign of ∂f/∂y with accuracy of more than 95% with proper
parameter settings.

An interesting observation here is that the accuracy of induced qualitative
tree models highly exceeds that of point-wise partial derivatives. For instance,
qualitative models for derivatives by LWR reach 95�100% despite the low, 70%
accuracy of estimates of the derivative. When generalizing from labels denoting
qualitative derivatives, incorrect labels are scattered randomly enough that C4.5
recognizes them as noise and induces a tree with a single node.

10



τ -regression
LWR Pairs κ = 30 50 70 100

k = 10 .727 .690 .597 .626 .639 .647
20 .725 .792 .576 .593 .619 .646
30 .751 .879 .545 .571 .609 .618
40 .740 .919 .556 .588 .613
50 .725 .966 .541 .558 .612

(a) Accuracy of qualitative derivatives.

τ -regression
LWR Pairs κ = 30 50 70 100

k = 10 1.00 .898 .737 .880 .890 .864
20 1.00 .930 .745 .743 .811 .860
30 .978 .954 .752 .599 .813 .777
40 .971 .964 .780 .732 .700
50 .956 .986 .906 .805 .760

(b) Accuracy of qualitative models induced by C4.5.

Table 2: Results of experiments with f(x, y) = x3 − y.

Function f(x, y) = sin x sin y has partial derivatives ∂f/∂x = cosx sin y and
∂f/∂y = cos y sinx, which change their signs multiple times in the observed
region. The accuracy of all methods is mostly between 80 and 90 percent,
degrading with larger neighbourhoods (Table 3). However, the accuracy of
C4.5 barely exceeds 50% which we would get by making random predictions.
Rather than a limitation of Padé, this shows the (expected) inability of C4.5 to
learn this checkboard-like concept.

Since qualitative modelling has been traditionally interested in examples
from physics, we also tested Padé's ability to rediscover three simple physical
laws from computer generated data. Each domain is described by an equation
which was used to obtained 1000 uniform random samples.

Centripetal force. The centripetal force F on an object of mass m moving
at a speed v along a circular path with radius r is

F =
mv2

r
.

We prepared a data set for this target concept with m sampled randomly from
[0.1, 1], r from [0.1, 2] and v from [1, 10].
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τ -regression
LWR Pairs κ = 30 50 70 100

k = 10 .882 .858 .863 .885 .890 .886
20 .870 .841 .820 .865 .880 .882
30 .862 .823 .769 .837 .861 .877
40 .844 .796 .799 .839 .853
50 .814 .754 .717 .810 .845

(a) Accuracy of qualitative derivatives.

τ -regression
LWR Pairs κ = 30 50 70 100

k = 10 .509 .519 .516 .512 .510 .509
20 .515 .531 .509 .518 .522 .510
30 .515 .523 .510 .513 .514 .515
40 .521 .555 .511 .507 .511
50 .516 .583 .507 .508 .515

(b) Accuracy of qualitative models induced by C4.5.

Table 3: Results of experiments with f(x, y) = sinx sin y.

Apart from the failure of τ -regression on ∂F/∂m, which we cannot explain,
the proportion of correctly computed qualitative partial derivatives (Table 4a) is
around 100%. C4.5 correctly induced single-node trees predicting F = Q(+m),
F = Q(+v) and F = Q(−r).

Gravitation. Newton's law of universal gravitation states that a point mass
attracts another point mass by a force pointing along the line intersecting both
points with the force equal to

F = G
m1m2

r2
,

where F is gravitational force, G is the gravitational constant, m1 and m2 are
the points' masses, and r is the distance between the two point masses. We
prepared a data set where m1 and m2 were sampled randomly from [0.1, 1] and
r from [0.1, 2].

Padé again reached almost 100% accuracy (Table 4b) and C4.5 induced
correct models F = Q(+m1), F = Q(+m2) and F = Q(−r).

Pendulum. The period T of the �rst swing of a pendulum w.r.t. its length

12



variable m v r

LWR 1.00 1.00 1.00

τ -regression .86 .97 .94

parallel pairs 1.00 1.00 .98

(a) Centripetal force

variable m1 m2 r

LWR .964 .96 1.00

τ -regression .88 .87 .99

parallel pairs .96 .96 1.00

(b) Gravitational force

variable l φ

LWR 1.00 .98

τ -regression 1.00 .83

parallel pairs 1.00 .97

(c) Pendulum

Table 4: Accuracy of computed partial derivatives for domains from physics.

l, the mass of the bob m and the initial angle ϕ is2

T = 2π

√
l

g
(1 +

1

16
ϕ2

0 +
11

3072
ϕ4

0 +
173

737280
ϕ6

0 + . . .).

The mass was again chosen randomly from [0.1, 1], the length was from [0.1, 2],
the angle was between −180 and 180 degrees, and g = 9.81.

Table 4c shows the accuracies for dependency of the force on the length and
the angle. All methods achieved 100% accuracy for the length, i.e. for each
learning example the qualitative derivative equals the ground truth.

The qualitative model describing the relation between T and ϕ depends on
the value of ϕ. C4.5 induced a qualitative tree shown in Fig. 2 from data labelled
by LWR. The models based on τ -regression and parallel pairs are the same � the
only di�erence is in the split threshold at the root node which is −2.7 deg for
τ -regression and −2.28 deg for parallel pairs. The tree states that for negative

2http://en.wikipedia.org/wiki/Pendulum
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ϕ

≤−1.06 >−1.06

T = Q(−ϕ) T = Q(+ϕ)

Figure 2: The qualitative model describing the relation between T and ϕ.
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(a) Data set x2 − y2.
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(b) Data set xy.

Figure 3: Accuracy for di�erent number of additional irrelevant attributes.

angles the period T decreases with ϕ while for positive angles it increases with
ϕ. In other words, the period increases with the absolute value of ϕ.

4.2. E�ect of irrelevant attributes

Many real-world data sets include large number of attributes with no e�ect
on the function value. The following experiment shows the robustness of Padé
in such cases.

We consider data sets obtained by sampling f(x, y) = x2− y2 and f(x, y) =
xy as described above and observe the correctness of partial derivatives com-
puted by Padé when 0�50 random attributes from the same interval as x and
y, [−10, 10], are added to the domain. The graphs in Fig. 3 show how the ac-
curacy drops with the increasing number of added irrelevant attributes for each
method.
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σ = 0 σ = 10 σ = 30 σ = 50
LWR .993 .962 .878 .795
τ -regression .981 .945 .848 .760
parallel pairs .992 .924 .771 .680

(a) Correctness of computed derivatives

σ = 0 σ = 10 σ = 30 σ = 50
LWR .996 .978 .956 .922
τ -regression .991 .976 .949 .917
parallel pairs .995 .966 .949 .901

(b) Correctness of qualitative models induced by C4.5

Table 5: E�ect of noise on the accuracy of computed qualitative partial deriva-
tives for f(x, y) = x2 − y2 with random noise from N(0, σ).

We observe a steep drop in the accuracy of LWR which we can ascribe to
the fact that LWR is multivariate and is solving an ill-conditioned system as
the number of attributes approaches k. Parallel pairs and τ -regression avoid
this problem by computing the derivative by a single attribute at a time.

As for comparison between τ -regression and parallel pairs, we performed
the same experiment with other similar functions and found that no method
consistently outperforms the other.

4.3. Coping with noise

In this experiment we add various amounts of noise to the function value.
The target function is f(x, y) = x2 − y2 de�ned on [−10, 10] × [−10, 10] which
puts f in [−100, 100]. We added Gaussian noise with a mean of 0 and variance
0, 10, 30, and 50, i.e. from no noise to the noise in the range comparable to the
signal itself. We measured the accuracy of derivatives and models induced by
C4.5. Since the data contains noise, we set the C4.5's parameter m (minimal
number of examples in a leaf) to 10% of the examples of our data set, m = 100.
We repeated the experiment with each amount of noise 100 times and computed
the average accuracies.

The results are shown in Table 5. Padé is quite robust despite the huge
amount of noise. As in other experiments on arti�cial data sets, we again
observed that C4.5 is able to learn almost perfect models despite the drop in
correctness of derivatives at higher noise levels.
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4.4. Stability on real-world data sets

In measurements of stability we ran Padé on six UCI ML repository [32] data
sets (servo, imports-85, galaxy, prostate, housing, auto-mpg) and the four arti�-
cial data sets (xy, x2−y2, x3−y, sinx sin y) which were already used in previous
experiments. For each data set we created 100 bootstrap samples and for each
sample we computed qualitative partial derivatives of the class w.r.t. all con-
tinuous attributes for each example. We de�ned stability w.r.t. attribute xi for
example xm, βxm(xi), as the proportion of the prevailing derivatives (Qxm(+xi)
or Qxm(−xi)) among all positive and negative derivatives predicted for xm,

βxm(xi) =
max (#Qxm(+xi),#Qxm(−xi))

#Qxm(+xi) + #Qxm(−xi)
. (17)

The total stability with regard to attribute xi is the average stability across all
examples in the data set. We prefer β close to 1, which happens when most of
the qualitative predictions for this derivative are the same. The lowest possible
β is 0.5.

The settings for all methods were k = 20 and κ = 50 for τ -regression. The
lower value of κ was used due to a smaller number of examples. Results in
Table 6 show the average stability of the partial derivative of the outcome w.r.t.
to each attribute.

Altogether there are 46 continuous attributes in all domains. We ranked
performances of methods for each attribute, where rank 1 was assigned to the
best method and rank 3 to the worst one. Averaging over all attributes showed
that the parallel pairs method is the most stable with a rank of 1.80, slightly
behind is the τ -regression method with 1.84, while the LWR method achieved
a considerably worse rank of 2.35.

5. Case study: Billiards

To show a practical use of the proposed methods, we analyse a problem from
billiards. Billiards is a common name for table games played with a stick and a
set of balls, such as snooker or pool and their variants. The goals of the games
vary, but the main idea is common to all: the player uses the stick to stroke the
cue ball aiming at another ball to achieve the desired e�ect. The friction between
the table and the balls, the spin of the cue ball and the collision of the balls
combine into a very complex physical system [33]. However, an amateur player
can learn the basic principles of how to stroke the cue ball without knowing
much about the physics behind it.
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data set/attribute LWR τ PP

auto
displacement .76 .80 .75
horsepower .71 .84 .75

weight .77 .81 .78
acceleration .75 .76 .77

imports-85
normalized-losses .68 .76 .72

wheel-base .66 .85 .89
length .72 .85 .82
width .67 .82 .94

curb-weight .88 .88 .96
height .72 .79 .75

engine-size .71 .80 .91
bore .67 .78 .85

compression-ratio .68 .81 .79
stroke .65 .80 .81

horsepower .64 .89 .93
peak-rpm .66 .83 .75

highway-mpg .66 .87 .84
city-mpg .65 .87 .88

housing
crim .71 .80 .78
indus .68 .85 .81
nox .70 .80 .85
rm .87 .88 .92
age .82 .79 .79
dis .71 .81 .81
tax .70 .88 .84

ptratio .67 .85 .84
b .68 .76 .75

lstat .71 .91 .93

data set/attribute LWR τ PP

galaxy
east.west .93 .90 .88

north.south .93 .90 .80
radial.position .93 .90 .83

prostate
lcavol .92 .82 .93

lweight .78 .80 .80
age .69 .79 .79
lbph .69 .78 .78
lcp .71 .77 .71

servo
pgain .95 .94 1.00
vgain .88 .72 .85

xy
x .99 .95 .99
y .99 .94 .98

x3 − y
x 1.00 1.00 1.00
y .77 .75 .78

x2 − y2

x .99 .95 .99
y .99 .96 .99

sinx sin y
x .91 .88 .86
y .91 .89 .86

Table 6: Stability on real and arti�cial data sets. The numbers correspond to
stabilities of LWR, τ -regression and parallel pairs, respectively.
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b b

(a) A stroke with azimuth 0. The cue ball
hits the black one with a full hit.

b

b

(b) A stroke with azimuth > 0 causes a so
called thin hit.

Figure 4: Strokes with di�erent fullness of hit (azimuth).

Figure 5: Example trace from the simulator.

Our goal is to induce a qualitative model describing the relation between
the azimuth (degree of fullness of hit; see Fig. 4) and the re�ection angle of the
cue ball after the collision with another ball. We de�ne the re�ection angle as
the angle between the stroke direction and the line connecting the positions of
the cue ball's collision with the black ball and its next collision, either with the
cushion or with the black ball again (Fig. 5).

We model the relation between the azimuth and the angle as it depends on
four attributes (Table 7): the horizontal and the vertical angle of the stick, called
azimuth and elevation, respectively, as well as the follow (forward/backward
spin; see Fig. 6) of the cue ball and the velocity of the stroke.
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b 0, no spin

b 0.5r, forward spin

b
−0.5r, backward spin

Figure 6: Spinning the cue ball with a follow (above centre) or a draw (below
centre). Dots represent the point at which the cue ball is hit with the stick.

name range description
azimuth [-15, 15] deg the horizontal angle of the stick
elevation [0, 30] deg the vertical angle of the stick
velocity [3, 5] m/s velocity of the stick
follow [−.5r, .5r] forward/backward spin caused by hitting the ball

above/below the centre
angle [-180, 180) deg the re�ection angle of the cue ball

Table 7: The observed variables in the billiards case study.

We used the billiards simulator [34] to collect a sample of 5000 randomly
chosen scenarios. We chose to use τ -regression with parameters as usual, κ =
100, k = 20. We induced a qualitative tree using C4.5 and asked the experts
for their interpretation of the model.

The tree induced by C4.5 is shown in Fig. 7a. The experts found the model
much easier to understand than a set of equations and the knowledge easier to
transfer to the actual game. They were also able to recast the original tree into
a simpler model (Fig. 7b). As such, it can serve conceptualization of the domain
useful for beginners.

The tree �rst splits on attribute follow. For negative values (the cue ball is
hit below the centre), the backward spin results in inversely proportional rela-
tion between the re�ection angle and the azimuth, i.e., increasing the azimuth

decreases the angle and vice versa. The exception at the azimuth of zero is the
artefact of the coordinate system: the re�ection angle at this azimuth crosses
the line of discontinuity at ±180 deg, so an increase from, say, 179 to 181 degrees
is recorded as a decrease from 179 to -179 degrees.

Positive values of follow give the cue ball an extra amount of forward spin,
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(a) The original tree induced by C4.5

follow
negative

azimuth is 0
no

−

yes

+

positive

|azimuth| < 8

no

+

yes

−

(b) Reinterpretation by domain experts

Figure 7: The qualitative model describing the relation between the re�ection
angle and azimuth.

which adds to the spin that the cue ball acquires due to rolling. In this case,
azimuth has a di�erent e�ect on the black ball. Having a forward spin, the cue
ball has a tendency to roll forward after the collision. For azimuth approximately
between −8 and 8 degrees, increasing (decreasing) the azimuth also increases
(decreases) the re�ection angle. For greater absolute values of azimuth the cue
ball only partially hits the black ball which causes the re�ection angle to become
negatively related with the azimuth.

Our model also correctly recognized the two important attributes, follow
and azimuth. The other two, elevation and velocity indeed have no e�ect on
re�ection angle in our context, according to the expert opinion.

We have consequently tested the obtained qualitative relations in the simu-
lator by simulating small changes in azimuth while leaving the values of other
attributes constant and observing the re�ection angle. We found all rules cor-
rect apart from some small deviations regarding the numerical values of the
splits in the qualitative tree.
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6. Discussion and conclusion

The three methods for computation of derivatives di�er in their theoretical
background, which leads to di�erences in their performance.

LWR is a multivariate method, computing all derivatives at once, while the
other two are univariate. This mostly puts LWR at a disadvantage. LWR is
more sensitive to the size of data set: if the number of attributes is comparable to
(or even greater) than the number of points on which the regression is computed
(in our case, this is the number of examples in the neighbourhood, k, and not
the total size of the data set), the LWR is solving an ill-conditioned system.
This problem clearly surfaces in our experiments with irrelevant attributes. The
other two methods take one attribute at a time and do not run into this problem.
When the number of attributes is small, LWR however gives satisfactory results.

LWR also fared considerably worse on real-world data sets where we eval-
uated the methods indirectly by testing their stability. The lower stability of
LWR re�ects its higher complexity. Based on multivariate regression, the num-
ber of parameters that LWR optimises equals the number of attributes. The
higher complexity of the LWR method allows it to �t the data better, i.e. it has
lower bias at the cost of higher variance. Therefore, LWR can in theory better
estimate derivatives when compared to the other two, but it can over�t on data
with many attributes. This property is also manifested in our experiments,
where LWR performed considerably worse on domains with many attributes
(housing and imports-85), while it scored best on the �ve domains which only
have two attributes.

Being univariate, the τ -regression and the parallel pairs methods have to se-
lect examples lying in the direction of di�erentiation to exclude the in�uence of
other attributes on function value. To gather the same number of examples as
the LWR, they expand the neighbourhood. The τ -regression does so by extend-
ing the neighbourhood in direction of the axis of di�erentiation and the parallel
pairs method di�erentiates along lines parallel to the actual axis of di�erentia-
tion. The accuracy of computed derivatives should pro�t from excluding other
attributes and su�er from extending the neighbourhood. The e�ect of this is
visible on target functions x3 − y and sinx sin y. The former tests how well the
method copes with e�ects of x when di�erentiating by y; LWR fails here, while
parallel pairs work well. The latter concept requires a small neighbourhood, so
LWR fares better here, although the di�erence in performance is not as large
as in for the former concept.

The di�erence between the τ -regression and parallel pairs is subtle. The τ -
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regression computes the derivative inside a somewhat longer tube, whose length
is governed by the parameter κ, which we typically set to 50�100. It assumes
that the function is linear in a longer region, and the error comes mostly from
violating this assumption. Parallel pairs use a smaller vicinity; in most experi-
ments we set κ and k to 20. The function is thus required to be linear only close
to x0. The price to pay is that the derivative is smoothed over a hyper-disc
perpendicular to the axis of di�erentiation instead of being computed at x0,
as in τ -regression. This may cause problems if the derivative strongly depends
upon other arguments of the function. We were however unable to experimen-
tally �nd any practical consequences of this theoretical di�erence between the
τ -regression and parallel pairs. In general, recommending one method for a
particular context is equally impossible as recommending a machine learning
algorithm for a certain domain. A general approach should be to try both.

Experiments demonstrate that while computation of partial derivatives is
often di�cult and prone to errors, even quite unreliable estimates usually result
in correct qualitative models. Even a modest learning algorithm such as C4.5
is able to reduce the noise in the computed derivatives and build models which
almost perfectly match the target function.

Apart from ignoring the noisy labels, the C4.5 task was rather trivial for
most arti�cial domains as it required inducing a tree with one or two leaves. It
was put to a more serious test in a case study from billiards. It has induced a
correct model which also demonstrates the basic advantage of qualitative mod-
elling over standard regression modelling: the model we induced presents the
general principles which can be used by a player, while a regression model would
describe complex numerical relationships which would probably be di�cult to
comprehend and certainly impossible to use at the billiards table.

While this model is still rather small and simple, real-world qualitative mod-
els induced by experts, such as Samuelson [3] and Je�ries and May [1, 2], do
not get any more complex than this neither. It may be that either the world
is simpler than expected when described qualitatively, or that humans are used
to reason using simple models which skip over the details, which are included
only in speci�c models for particular contexts.

In summary, we introduced a new approach to learning qualitative models
which di�ers from existing approaches by its trick of translating the learning
problem into a classi�cation problem and then applying the general-purpose
learning methods to solve it. To focus the paper, we mostly explored the �rst
step which involves the estimation of partial derivatives. The second step opens
a number of other interesting research problems not explicitly discussed here.

22



One is exploration of other, more powerful learning algorithms. Is our above
assumption of the simplicity of the world in qualitative terms correct, or would
using, say, support vector machines, result in much better models? Another
interesting question is how to combine models for derivatives with respect to
individual arguments into a single model describing the function's behaviour
with respect to all arguments. One approach may be to use multi-label learning
methods to model all derivatives at once. We leave these questions open for
further research in the area.
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