From 12378810ee9207536bfa0c264c1bf2a2b0296171 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Martin=20Mo=C5=BEina?= Date: Wed, 24 Aug 2016 15:32:22 +0200 Subject: Added several new exercises for Python (related to dictionaries and sets). --- python/problems/dictionaries/text/common.py | 86 +++++++++++++++++++++++++++++ python/problems/dictionaries/text/en.py | 13 +++++ python/problems/dictionaries/text/sl.py | 45 +++++++++++++++ python/problems/dictionaries/text/tmp.py | 29 ++++++++++ 4 files changed, 173 insertions(+) create mode 100644 python/problems/dictionaries/text/common.py create mode 100644 python/problems/dictionaries/text/en.py create mode 100644 python/problems/dictionaries/text/sl.py create mode 100644 python/problems/dictionaries/text/tmp.py (limited to 'python/problems/dictionaries/text') diff --git a/python/problems/dictionaries/text/common.py b/python/problems/dictionaries/text/common.py new file mode 100644 index 0000000..134f69b --- /dev/null +++ b/python/problems/dictionaries/text/common.py @@ -0,0 +1,86 @@ +import re +from python.util import has_token_sequence, string_almost_equal, \ + string_contains_number, get_tokens, get_numbers, get_exception_desc +from server.hints import Hint + +id = 20612 +number = 13 +visible = True + +solution = '''\ +import collections + +def following_words(txt): + words = txt.split() + freq = collections.defaultdict(list) + for word, next_word in zip(words, words[1:]): + freq[word].append(next_word) + return freq + +def freq_following_word(txt): + following = following_words(txt) + for f in following: + vals = collections.Counter(following[f]) + s = sorted(vals.most_common(), key = lambda x: (-x[1], x[0])) + following[f] = s[0][0] + return following + +def text(word, full_text, num): + freq = freq_following_word(full_text) + words = [] + for i in range(num): + words.append(word) + word = freq[word] + return ' '.join(words) +''' + +hint_type = { + 'final_hint': Hint('final_hint') +} + +def test(python, code): + func_name = 'text' + tokens = get_tokens(code) + if not has_token_sequence(tokens, ['def', func_name]): + return False, [{'id' : 'no_func_name', 'args' : {'func_name' : func_name}}] + + in_out = [ + (('in', 'in in in in', 5), 'in in in in in'), + (('in', 'in to in ono in to smo mi', 5), 'in to in to in'), + (('danes', 'danes je lep dan danes sije sonce', 5), + 'danes je lep dan danes'), + (('danes', 'danes je lep dan danes sije sonce danes sije dan ki je sonce', 5), + 'danes sije dan danes sije'), + ] + + test_in = [(func_name+'%s'%str(l[0]), None) for l in in_out] + test_out = [l[1] for l in in_out] + + answers = python(code=code, inputs=test_in, timeout=1.0) + n_correct = 0 + tin, tout = None, None + for i, (ans, to) in enumerate(zip(answers, test_out)): + corr = ans[0] == to + n_correct += corr + if not corr: + tin = test_in[i][0] + tout = to + + passed = n_correct == len(test_in) + hints = [{'id': 'test_results', 'args': {'passed': n_correct, 'total': len(test_in)}}] + if tin: + hints.append({'id': 'problematic_test_case', 'args': {'testin': str(tin), 'testout': str(tout)}}) + if passed: + hints.append({'id': 'final_hint'}) + return passed, hints + + +def hint(python, code): + tokens = get_tokens(code) + + # run one test first to see if there are any exceptions + answer = python(code=code, inputs=[(None, None)], timeout=1.0) + exc = get_exception_desc(answer[0][3]) + if exc: return exc + + return None diff --git a/python/problems/dictionaries/text/en.py b/python/problems/dictionaries/text/en.py new file mode 100644 index 0000000..4e5f5b3 --- /dev/null +++ b/python/problems/dictionaries/text/en.py @@ -0,0 +1,13 @@ +id = 20612 +name = 'Generated text' + +description = '''\ +

(translation missing)

''' + +hint = { + 'plan': '''\ +

(translation missing)

''', + + 'no_input_call': '''\ +

(translation missing)

''', +} \ No newline at end of file diff --git a/python/problems/dictionaries/text/sl.py b/python/problems/dictionaries/text/sl.py new file mode 100644 index 0000000..3afeec4 --- /dev/null +++ b/python/problems/dictionaries/text/sl.py @@ -0,0 +1,45 @@ +import server +mod = server.problems.load_language('python', 'sl') + + +id = 20612 +name = 'Generirano besedilo' + +description = '''\ +

+Napisati želimo program, ki bo generiral tipičen stavek. Seveda ni dobro, +da si samo naključno izbiramo besede in jih lepimo skupaj, saj bi tako dobili +nekaj povsem neberljivega. Naloge se bomo lotili malo pametneje. +Recimo, da ima program na voljo nek tekst, npr. 'in to in ono smo mi', +iz katerega se lahko uči. Naš tekst bomo začeli z izbrano besedo. +Nadaljujemo tako, da se vprašamo katera beseda se v učnem tekstu pojavi +najpogosteje za izbrano besedo. Če začnemo z besedo to, potem +bo naslednja beseda in. Postopek nato ponovimo z besedo in. +

+ +

+Napišite funkcijo text(word, full_text, num), ki sprejme začetno +besedo word, celotno besedilo full_text, +ter generira besedilo dolgo num besed. +

+ +

Da bodo generirani stavki bolj zanimivi, lahko program testiraš na +kakšnem romanu, npr. Orwellovi noveli 1984. Vendar pa tega ne boš mogel +izvajati v CodeQ, saj nima dostopa do mreže. Poženi iz kakšnega drugega programa, +npr. iz pyCharma ali kar iz ukazne vrstice. +

+>>> import urllib.request
+>>> txt = urllib.request.urlopen('http://squeeb1134.tripod.com/1984.txt').read().decode('utf8')
+>>> text('Big', txt, 15)
+'Big Brother is not be a few minutes at the Party member of the Party'
+
+''' + +plan = [] + +hint = { + 'final_hint': ['''\ +

Program je pravilen!
+

+'''], +} diff --git a/python/problems/dictionaries/text/tmp.py b/python/problems/dictionaries/text/tmp.py new file mode 100644 index 0000000..bf56c4f --- /dev/null +++ b/python/problems/dictionaries/text/tmp.py @@ -0,0 +1,29 @@ +import collections + +def following_words(txt): + words = txt.split() + freq = collections.defaultdict(list) + for word, next_word in zip(words, words[1:]): + freq[word].append(next_word) + return freq + +def freq_following_word(txt): + following = following_words(txt) + for f in following: + vals = collections.Counter(following[f]) + s = sorted(vals.most_common(), key = lambda x: (-x[1], x[0])) + following[f] = s[0][0] + return following + +def text(word, freq, num): + words = [] + for i in range(num): + words.append(word) + word = freq[word] + return ' '.join(words) + + +import urllib.request +txt = 'danes je lep dan danes sije sonce danes sije dan ki je sonce' +#urllib.request.urlopen('http://squeeb1134.tripod.com/1984.txt').read().decode('utf8') +print (text('danes', freq_following_word(txt), 5)) -- cgit v1.2.1