\textbf{The dataset} \begin{columns} \begin{column}{0.40\textwidth} \begin{tabular}{l|rrrr|l} & $P_1$ & $P_2$ & $P_3$ & $\ldots$ & class \\ \hline $S_1$ & 0 & 1 & 1 & $\ldots$ & $correct$ \\ $S_2$ & 1 & 0 & 0 & $\ldots$ & $correct$ \\ $S_3$ & 1 & 1 & 0 & $\ldots$ & $incorrect$ \\ $\vdotswithin{S_4}$ & & $\vdotswithin{1}$ & & & $\vdotswithin{correct}$ \\ \end{tabular} \end{column} \begin{column}{0.60\textwidth} \begin{itemize} \item Each submission ($S_1, S_2, S_3, \ldots$) becomes a learning instance. \item Each constructed pattern ($P_1, P_2, P_3, \ldots$) is a binary feature. \item Based on test results each submission is classified either as $correct$ or $incorrect$ \end{itemize} \end{column} \end{columns} \vspace{1cm} \begin{columns} \begin{column}{0.01\textwidth} \end{column} \begin{column}{0.59\textwidth} \textbf{Characterizing typical approaches and errors with rule learning} \begin{itemize} \item \emph{n-rules} describe buggy patterns: \\IF $condition$ THEN $incorrect$. \item \emph{p-rules} describe necessary patterns for programs to be correct: \\IF $condition$ THEN $correct$. \end{itemize} \vspace{0.5cm} \textbf{Example:} Implement a function that returns the element with the largest absolute value. \begin{itemize} \item 155 submissions (57 correct, 98 incorrect) \item 8298 patterns, 15 n-rules and 6 p-rules. \end{itemize} \textbf{Correct solution:} \begin{Verbatim} \textbf{def} max_abs(l): vmax = l[0] \textbf{for} v \textbf{in} l: \textbf{if} abs(v) > abs(vmax): vmax = v \textbf{return} vmax \end{Verbatim} \vspace{0.5cm} \textbf{Two sample learned n-rules:} \begin{itemize} \item \textsf{P64 ⇒ incorrect } (covers 22) \item \textsf{P2 ∧ P70 ⇒ incorrect} (covers 17) \end{itemize} \end{column} \begin{column}{0.40\textwidth} \fbox{ \begin{minipage}[t]{0.94\textwidth} \textbf{How useful are patterns?} \begin{itemize} \item Compare accuracies of Random Forest and Majority Classifier. \item Three types of exercises (basic, loops, functions) \end{itemize} \vspace{1cm} \begin{center} \begin{tabular}{l|rr} \textbf{Problem} & Maj & RF \\ \hline \textsf{F2C}& 0.579 & 0.933 \\ \textsf{ballistics}& 0.761 & 0.802 \\ \textsf{average}& 0.614 & 0.830 \\ \hline \textsf{buy\_five}& 0.613 & 0.828 \\ \textsf{competition}& 0.703 & 0.847 \\ \textsf{top\_shop}& 0.721 & 0.758 \\ \textsf{minimax}& 0.650 & 0.644 \\ \textsf{ch\_account}& 0.521 & 0.744 \\ \textsf{con\_anon}& 0.688 & 0.800 \\ \hline \textsf{greatest}& 0.585 & 0.859 \\ \textsf{greatest\_abs}& 0.632 & 0.845 \\ \textsf{greatest\_neg}& 0.636 & 0.815 \\ \hline Average & 0.642 & 0.809 \\ \end{tabular} \end{center} \end{minipage}} \end{column} \end{columns} \vspace{1.0cm} \textbf{Vizualizations of patterns}; left program contains pattern \textsf{P64}, right program contains pattern \textsf{P2} (red) and \textsf{P70} (blue) that matches the call to \textsf{abs} in an assignment statement nested within a for loop and an if clause. \begin{Verbatim} \textbf{def} max_abs(l): \textbf{def} max_abs(l): vmax = 0 vmax = None \textbf{for} i \textbf{in} range(len(l)): \textbf{for} v \textbf{in} l: \textbf{if} \blue{vmax} < abs(l[i]): \textbf{if} vmax==None or vmax