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1 INTRODUCTION

The main purpose of the project was to create the EV3
robot controller, capable of steering the robot in the way that
it follows the previously prepared black line.

Lego Mindstorms EV3 is the third generation robotics kit
in Lego’s Mindstorms line. The EV3 set, besides elements
necessary to assemble the robot, includes following sensors:

• Touch Sensor
• Color Sensor
• Infrared Sensor

Among all available items, to complete our task we
needed only the Color Sensor. The sensors values are
treated as our algorithm input, and based on them the
decision of further movement is taken.

Fig. 1. EV3 robot controller

Instructing the robot to move and turn is accomplished
by the Large Motors which rotate in a predetermined direc-
tion where positive amount of power (e.g.75) will cause a
clockwise rotation and negative power (e.g. -45) will cause
a counter-clockwise rotation.

To accomplish our goal we used two different ap-
proaches.

1) Reinforcement learning
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The reinforcement learning algorithms offer one of
the most general frameworks in learning subjects.
We will present an approach using the Q-Learning
algorithm on a Lego robot in order for it to learn
”by itself” how to follow a black line drawn down
on a white surface, using Python as a programming
environment.

2) Neural Network approach
The neural network approach is slightly more com-
plicated. First of all the training data has to be
collected, based on which the neural network is
trained. In our case the data was collected from
previously implemented Q-learning algorithm. Af-
ter the training process the parameters of neural
network are established and NN can be applied on
the robot.

2 Q-LEARNING

The reinforcement learning assumes that the world can be
described by a set of states S, finite number of actions A
and for each step the robot observes the state of the world
St and chooses an action at. After taking the action, the
reward function gives a reward rt to the robot.

The model of reinforcement learning looks as follows:

1) check the state St

2) pick an action at
3) do that action
4) check the new state St1

5) get the reward rt1
6) learn from experience(relate state-action reward

value and store it)
7) repeat

The Q-learning algorithm is the particular reinforcement
learning algorithm which approximates the value of state-
action function Q iterating the process. We keep an estimate
of the Q(s, a) function in a form of matrix. This values are
updated as the agent achieves more experience.
We use the following notation:

• Q(s, a) is the learning function
• R(s, a) is the matrix of ”rewards” and ”punish-

ments”
• s ∈ S is the current state
• a ∈ A is the executed action
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• s′ ∈ S is the state driven by the action a
• 0 < α is the learning rate
• 0 ≤ γ is the discount rate

The pseudocode of the Q-learning algorithm is:

1) initialize Q(s, a) on a small random values, ∀s,∀a
2) check the state s
3) pick an action a and execute it out
4) check the new state s′ and reward the last action
5) Q(s, a) ← Q(s, a) + α ∗ (R(s, a) + γ ∗max(Q(s′, :

))−Q(s, a))
6) go to step 2.

We defined three states:

1) sensor detects black- returns the value in range
(0,15)

2) sensor detects grey - returns the value in range
(16,85)

3) sensor detects white - returns the value in range
(86,100)

and three actions:

1) turn left - is achieved by applying the speed to the
right motor

2) turn right - is achieved by applying the speed to the
left motor

3) go forward - is achieved by applying the speed to
both motors

Fig. 2. Color discretization

We chose the next values in our implementation:

• α = 1.0
• γ = 0.8
•

R(s, a) =

 1 −10 1
−100 10 −1
−100 −10 100


The matrix R is the reward-punishment matrix that

defines values with which the Q matrix will be updated.
Since the following line problem is relatively easy and

the R matrix has strong punishments and rewards our
solution converges very fast and robot learns quickly how to
follow the line. It happens after approximately 4-5 iterations.

3 NEURAL NETWORKS

We created a simple neural network with 1 hidden layer that
learned to steer the EV3 robot based on the data, collected
during Q-learning process. The data was collected in the
form (colorBeforeMove, colorAfterMove, move), where the
colors and moves were coded as follows:
Colors:

• 0 black
• 1 white
• 2 gray

Moves:

• 0 left
• 1 right
• 2 forward

3.1 Preprocessing of data
The tuples were collected in a .csv file that we processed in
order to get the data format needed to enter into the neural
network. Each input consists of the previous movement
and states reading along with the last color reading, and
the corresponding output is the movement following that
reading. E.g input is (black, black, left, gray) and the output
is forward.

In order to achieve better accuracy in the neural network
all values were converted to one-hot format in the following
way:

0 =
[
1 0 0

]
1 =

[
0 1 0

]
2 =

[
0 0 1

]
This resulted in input vectors of length 12 and output

vectors of length 3. In order to avoid bias in neural network
the pairs of input and output vectors were shuffled before
training. We used 90% of the data for training and 10% to
test the neural network.

3.2 Neural network model
We feed the preprocessed data into the neural network. First
we randomly initialize the weights for the input and the
hidden layer with mean 0. We then train the neural network.
In the feed forward we use the sigmoid nonlin function to
predict the output based on the weights:

def nonlin ( x , der iv=Fa l se ) :
i f ( der iv == True ) :

re turn x ∗ (1 − x )
re turn 1 / (1 + np . exp(−x ) )

We calculate the error based on the target value. To
adjust the weights we calculate the deltas for each layer:

l2 delta = l2 error∗nonlin(l2, deriv = True)∗descent rate

We adjust the error according to the level of confidence
of the result (where it lies on the sigmoid function) and
multiply it by the descent rate, which controls the speed
of convergence of the results.
Once the deltas are calculated we adjust the weights and
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repeat the entire process until the error decreases to an
acceptable level.
In our network we used a dataset with 700 samples. The
hidden layer has 2 neurons and in order to prevent too
steep convergence we use a descent rate of 0,01. The trained
network achieves 98, 8% accuracy.
After the network is trained we connect the EV3 and send
the collected data to the network as the robot moves. The
model produces the instructions for the robot to move in real
time according to the color read from the sensor, effectively
enabling the robot to follow the line.

4 SUMMARY

Neural network achieves good accuracy of 98.8% but it
needs to collect and preprocess the data before training
process, while Q-learning is inaccurate in the beginning and
with time it gets better and even has smoother movements
than the neural network.
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