OpenViBE
1.3.0
(0x00000124, 0x0000214f)
Python scripting
(0x5dc4f669, 0xd3fd4d64)
(0x007deef9, 0x2f3e95c6)
Clock frequency (Hz)
64
64
false
(0xb0d0db45, 0x49cbc34a)
Script
E:/Tilen/FAX/2. stopnja/UI/projekt-bci/free-will/scripts/python-learning.py
false
(0x330306dd, 0x74a95f98)
InputCSVSignal
E:/Tilen/FAX/2. stopnja/UI/projekt-bci/free-will/signals/record-sig-[2017.05.15-23.11.00].csv
false
(0x330306dd, 0x74a95f98)
InputCSVStimulations
E:/Tilen/FAX/2. stopnja/UI/projekt-bci/free-will/signals/record-stim-[2017.05.15-23.11.00].csv
false
(0x330306dd, 0x74a95f98)
SaveFile
false
(0x007deef9, 0x2f3e95c6)
WindowSize (ms)
100
100
false
(0x007deef9, 0x2f3e95c6)
NumOfPrevWindows
5
4
false
(0x007deef9, 0x2f3e95c6)
NumOfWindowsBefore
0
4
false
(0x007deef9, 0x2f3e95c6)
NumOfWindowsAfter
0
0
false
(0x007deef9, 0x2f3e95c6)
K-folds
4
10
false
(0x17ee7c08, 0x94c14893)
(0x1fa7a38f, 0x54edbe0b)
48.000000
(0x1fa963f5, 0x1a638cd4)
34
(0x207c9054, 0x3c841b63)
320.000000
(0x30a4e5c9, 0x83502953)
(0x4e7b798a, 0x183beafb)
(0x2a651510, 0xb4fad0d4)
(0x527ad68d, 0x16d746a0)
(0x61d11811, 0x71e65362)
(0xad100179, 0xa3c984ab)
102
(0xc46b3d00, 0x3e0454e1)
(0x00000000, 0x00055fbe)
(0xc73e83ec, 0xf855c5bc)
false
(0xce18836a, 0x9c0eb403)
2
(0xf191c1c8, 0xa0123976)
(0xfba64161, 0x65304e21)
(0x00000d51, 0x000039af)
CSV File Reader
(0x641d0717, 0x02884107)
(0x330306dd, 0x74a95f98)
Filename
E:/Tilen/FAX/2. stopnja/UI/projekt-bci/free-will/signals/record-stim-[2017.05.15-23.11.00].csv
false
(0x79a9edeb, 0x245d83fc)
Column separator
;
;
false
(0x2cdb2f0b, 0x12f231ea)
Don't use the file time
false
false
false
(0x007deef9, 0x2f3e95c6)
Unused parameter
32
0
false
(0x1fa7a38f, 0x54edbe0b)
-128.000000
(0x1fa963f5, 0x1a638cd4)
45
(0x207c9054, 0x3c841b63)
496.000000
(0x30a4e5c9, 0x83502953)
(0x4e7b798a, 0x183beafb)
(0x3bf57676, 0xad3aaefa)
(0xad100179, 0xa3c984ab)
97
(0xc46b3d00, 0x3e0454e1)
(0x00000000, 0x0001d5c4)
(0xc73e83ec, 0xf855c5bc)
true
(0xc80ce8af, 0xf699f813)
1
(0xce18836a, 0x9c0eb403)
4
(0x000055e6, 0x00000489)
Player Controller
(0x5f426dce, 0x08456e13)
(0x6f752dd0, 0x082a321e)
Stimulations
(0x2c132d6e, 0x44ab0d97)
Stimulation name
OVTK_StimulationId_Label_00
OVTK_StimulationId_TrialStop
false
(0xcc14d8d6, 0xf27ecb73)
Action to perform
Pause
Stop
false
(0x1fa7a38f, 0x54edbe0b)
128.000000
(0x1fa963f5, 0x1a638cd4)
23
(0x207c9054, 0x3c841b63)
320.000000
(0x4e7b798a, 0x183beafb)
(0x568d148e, 0x650792b3)
(0xad100179, 0xa3c984ab)
105
(0xc46b3d00, 0x3e0454e1)
(0x00000000, 0x00284de3)
(0xc73e83ec, 0xf855c5bc)
false
(0xce18836a, 0x9c0eb403)
2
(0xcfad85b0, 0x7c6d841c)
1
(0x00006c4c, 0x000002b3)
CSV File Reader
(0x641d0717, 0x02884107)
(0x330306dd, 0x74a95f98)
Filename
E:/Tilen/FAX/2. stopnja/UI/projekt-bci/free-will/signals/record-sig-[2017.05.15-23.11.00].csv
false
(0x79a9edeb, 0x245d83fc)
Column separator
;
;
false
(0x2cdb2f0b, 0x12f231ea)
Don't use the file time
false
false
false
(0x007deef9, 0x2f3e95c6)
Samples per buffer
32
32
false
(0x1fa7a38f, 0x54edbe0b)
-128.000000
(0x1fa963f5, 0x1a638cd4)
45
(0x207c9054, 0x3c841b63)
384.000000
(0x30a4e5c9, 0x83502953)
(0x4e7b798a, 0x183beafb)
(0x3bf57676, 0xad3aaefa)
(0xad100179, 0xa3c984ab)
97
(0xc46b3d00, 0x3e0454e1)
(0x00000000, 0x0007fed6)
(0xc73e83ec, 0xf855c5bc)
true
(0xc80ce8af, 0xf699f813)
1
(0xce18836a, 0x9c0eb403)
4
(0x00006ed7, 0x000003cf)
Signal display
(0x0055be5f, 0x087bdd12)
(0x5ba36127, 0x195feae1)
Data
(0x6f752dd0, 0x082a321e)
Stimulations
(0x6ab26b81, 0x0f8c02f3)
Channel Units
(0x5de046a6, 0x086340aa)
Display Mode
Scan
Scan
false
(0x33a30739, 0x00d5299b)
Auto vertical scale
Per channel
Per channel
false
(0x512a166f, 0x5c3ef83f)
Scale refresh interval (secs)
5
5
false
(0x512a166f, 0x5c3ef83f)
Vertical Scale
100
100
false
(0x512a166f, 0x5c3ef83f)
Vertical Offset
0
0
false
(0x512a166f, 0x5c3ef83f)
Time Scale
10
10
false
(0x2cdb2f0b, 0x12f231ea)
Bottom ruler
true
true
false
(0x2cdb2f0b, 0x12f231ea)
Left ruler
false
false
false
(0x2cdb2f0b, 0x12f231ea)
Multiview
false
false
false
(0x1fa7a38f, 0x54edbe0b)
-64.000000
(0x1fa963f5, 0x1a638cd4)
45
(0x207c9054, 0x3c841b63)
432.000000
(0x4e7b798a, 0x183beafb)
(0x92c056a7, 0x2dc71aff)
(0x527ad68d, 0x16d746a0)
(0xad100179, 0xa3c984ab)
87
(0xc46b3d00, 0x3e0454e1)
(0x00000000, 0x00024b35)
(0xc73e83ec, 0xf855c5bc)
true
(0xce18836a, 0x9c0eb403)
9
(0xcfad85b0, 0x7c6d841c)
3
(0x00000e16, 0x00006760)
(0x00006ed7, 0x000003cf)
0
(0x1b32c44c, 0x1905e0e9)
-99
(0x358ae8b5, 0x0f8bacd1)
384
(0x3f0a3b27, 0x570913d2)
-91
(0x6267b5c5, 0x676e3e42)
417
(0x000011ac, 0x000063f9)
(0x00006ed7, 0x000003cf)
1
(0x1b32c44c, 0x1905e0e9)
-99
(0x358ae8b5, 0x0f8bacd1)
496
(0x3f0a3b27, 0x570913d2)
-91
(0x6267b5c5, 0x676e3e42)
432
(0x00004464, 0x0000753e)
(0x000055e6, 0x00000489)
0
(0x1b32c44c, 0x1905e0e9)
71
(0x358ae8b5, 0x0f8bacd1)
320
(0x3f0a3b27, 0x570913d2)
112
(0x6267b5c5, 0x676e3e42)
320
(0x6160f9b8, 0x37b083c2)
<u><b><big>Overview</big></b></u>
This scenario is used to train data for the "free will experiment".
See the python scripts for a deeper look into the code.
Main Python script settings are:
<b>Script</b> - python script for learning and other ML methods
<b>InputCSVSignal</b> - captured EEG signal
<b>InputCSVStimulation</b> - captured keyboard times
<b>SaveFile</b> - if you want to save learning hypotesis into a (python pickle) file (e.g. ./python-out-[$core{date}-$core{time}].pkl)
<b>WindowSize (ms)</b> - size of windows/chunks in milliseconds
<b>NumberOfPrevWindows</b> - number of windows, to be marked as class 1 (just before the button was pressed)
<b>NumberOfWindowsBefore</b> - number of windows, to be marked as class 0 (before those marked as 1)
<b>NumberOfWindowsAfter</b> - number of windows, to be marked as class 0 (after those marked as 1)
<b>K-folds</b> - K-fold cross validation
(0x473d9a43, 0x97fc0a97)
-94.000000
(0x7234b86b, 0x2b8651a5)
-64.000000
(0x00003e01, 0x000020d2)
3
(0xffffffff, 0xffffffff)
(0x00006ed7, 0x000003cf)
0
(0x0c60317a, 0x7480157f)
Default window
1
(0xffffffff, 0xffffffff)
(0xffffffff, 0xffffffff)
1
(0x4c90d4ad, 0x7a2554ec)
1
(0x7b814cca, 0x271df6dd)
1
(0x4eff2d5e, 0x057e5a93)
Default tab
2
(0x0c60317a, 0x7480157f)
0
(0xffffffff, 0xffffffff)
1
(0x00b5ee2a, 0x40e0a42c)
Empty
0
(0x4eff2d5e, 0x057e5a93)
0
(0xffffffff, 0xffffffff)
0
(0x790d75b8, 0x3bb90c33)
Yann Renard / Fabien Lotte
(0x8c1fc55b, 0x7b433dc2)
(0x9f5c4075, 0x4a0d3666)
Classifier Training
(0xf36a1567, 0xd13c53da)
(0xf6b2e3fa, 0x7bd43926)
Motor Imagery
(0xf8034a49, 0x8b3f37cc)
INRIA