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Abstract. Knowledge elicitation is known to be a difficult task and
thus a major bottleneck in building a knowledge base. Machine learn-
ing has long ago been proposed as a way to alleviate this problem.
Machine learning usually helps the domain expert to uncover some
of the more tacit concepts. However, the learned concepts are of-
ten hard to understand and hard to extend. A common view is that
a combination of a domain expert and machine learning would yield
the best results. Recently, argument based machine learning (ABML)
has been introduced as a combination of argumentation and machine
learning. Through argumentation, ABML enables the expert to ar-
ticulate his knowledge easily and in a very natural way. ABML was
shown to significantly improve the comprehensibility and accuracy
of the learned concepts. This makes ABML a most natural tool for
constructing a knowledge base. The present paper shows how this is
accomplished through a case study of building a knowledge base of
an expert system used in a chess tutoring application.

1 INTRODUCTION
Knowledge is a key component of every intelligent computer sys-
tem. Knowledge acquisition is therefore one of the perennial tasks
of artificial intelligence. Unfortunately, this task proves to be a very
difficult one, especially so if the goal is to acquire the knowledge
in a comprehensible form. In building expert systems, it is exactly
this task that presents a major bottleneck [5]. The problem was ad-
dressed in various ways [1, 2, 4], proposing assorted cognitive tech-
niques like interviews, observations, analogy, etc. to elicit as much
knowledge from experts as possible. Nevertheless, the problem still
remains largely unsolved [6].

Machine learning has long ago been proposed as an alternative
way of addressing this problem [7]. While it was shown that it can be
successful in building knowledge bases [8], the major problem with
this approach is that automatically induced models rarely conform
to the way an expert wants the knowledge organised and expressed.
Models that are incomprehensible have less chance to be trusted by
experts and users alike. In striving for better accuracy, modern trends
in machine learning (e.g. support vector machines) do not seem to be
doing anything to alleviate this problem.

A common view is that a combination of a domain expert and
machine learning would yield the best results [14]. Most of the ap-
plications in the literature combine machine learning and the experts’
knowledge in one of the following ways: (a) experts validate induced
models after machine learning was applied, (b) experts provide con-
straints on induced models in the form of background knowledge,
and (c) the system enables iterative improvements of the model,
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where experts and machine learning algorithm improve the model in
turns. The last approach seems to be the best, however, it requires the
most effort on the part of the expert. This calls for a method that al-
lows the expert to express his or her knowledge in a most convenient
way and at the same time allows for seamless interaction between the
expert and the machine.

Argumentation based machine learning (ABML) [10] is a recent
method that seems to have potential to accomplish just that. It is a
natural fusion of argumentation and machine learning. The advan-
tages over traditional machine learning methods are better accuracy
and comprehensibility. Improvement in comprehensibility is espe-
cially important in light of knowledge extraction. Through argumen-
tation, ABML enables the expert to articulate his or her knowledge
easily and in a very natural way. Moreover, it prompts the expert to
share exactly that knowledge that is most useful for the machine to
learn, thus significantly saving the time of the expert.

The present paper describes a case study in building a knowledge
base of an expert system used in a chess tutoring application [12]
to demonstrate the power of ABML. First, we describe basics of
ABML [10] and a procedure that interacts with ABML and the ex-
pert. Then, in Section 3 the case study is presented and in Section 4
its results are assessed and discussed. We finish the paper with con-
clusions.

2 ARGUMENT BASED MACHINE LEARNING

Argument Based Machine Learning (ABML) [10] is machine learn-
ing extended with some concepts from argumentation. Argumen-
tation is a branch of artificial intelligence that analyzes reasoning
where arguments for and against a certain claim are produced and
evaluated [11]. A typical example of such reasoning is a law dispute
at court, where plaintiff and defendant give arguments for their op-
posing claims, and at the end of the process the party with better
arguments wins the case.

Arguments are used in ABML to enhance learning examples. Each
argument is attached to a single learning example only, while one ex-
ample can have several arguments. There are two types of arguments;
positive arguments are used to explain (or argue) why a certain learn-
ing example is in the class as given, and negative arguments are used
to explain why it should not be in the class as given. We used only
positive arguments in this work, as negatives were not required. Ex-
amples with attached arguments are called argumented examples.

Arguments are usually provided by domain experts, who find it
natural to articulate their knowledge in this manner. While it is gen-
erally accepted that giving domain knowledge usually poses a prob-
lem, in ABML they need to focus on one specific case only at a time
and provide knowledge that seems relevant for this case and does not



have to be valid for the whole domain. The idea can be easily illus-
trated with the task of commenting chess games. It would be hard to
talk about chess moves in general to decide precisely when they are
good or bad. However, if an expert is asked to comment on a par-
ticular move in a given position, he or she will be able to offer an
explanation and provide relevant elements of this position. Naturally,
in a new position the same argument could be incorrect.

An ABML method is required to induce a theory that uses given
arguments to explain the examples. Thus, arguments constrain the
combinatorial search among possible hypotheses, and also direct
the search towards hypotheses that are more comprehensible in the
light of expert’s background knowledge. If an ABML method is
used on normal examples only (without arguments), then it should
act the same as a normal machine learning method. We will use
method ABCN2 [10], an argument based extension of the well
known method CN2 [3], that learns a set of unordered probabilis-
tic rules from argumented examples. In ABCN2, the theory (a set of
rules) is said to explain the examples using given arguments, when
there exists at least one rule for each argumented example that con-
tains at least one positive argument in the condition part. This defini-
tion is a bit simplified, since it omits the use of negative arguments,
as they are not relevant for this paper2.

In addition to rules, we need an inference mechanism to enable
reasoning about new cases. In rule induction community this problem
is known as rule classification and several approaches can be found
in the literature[9]. In this study, we will use a simple algorithm;
among all relevant rules the best rules (with the highest predicted
class probability) for each class are selected and the probability of the
example’s class is obtained by normalising predicted probabilities of
selected rules.

2.1 Interactions between expert and ABML
In ABML, experts are asked to provide their prior knowledge in the
form of arguments for the learning examples rather than the general
domain knowledge. However, asking experts to give arguments to
the whole learning set is not likely to be feasible, because it would
require too much time and effort. The following loop describes the
skeleton of the procedure that picks out critical examples - examples
that ABML can not explain without some help:

1. Learn a hypothesis with ABML using given data.
2. Find the most critical example and present it to the expert. If a

critical example can not be found, stop the procedure.
3. Expert explains the example; the explanation is encoded in argu-

ments and attached to the learning example.
4. Return to step 1.

To finalise the procedure we need to contemplate the following two
questions:

• How do we select “critical” examples ?
• How can we achieve to get all necessary information for the cho-

sen example?

2.1.1 Identifying critical examples

The main property of critical examples is that the current hypothesis
can not explain them well, or, in other words, it fails to predict their

2 Due to space limitations, we will only roughly describe some of the mecha-
nisms of ABML (see [10] or/and its website www.ailab.si/martin/abml for
precise details).

class. Since ABCN2 gives probabilistic class prediction, we define
the most critical example as the example with the highest probabilis-
tic error. The probabilistic error can be measured in several ways. We
use a k-fold cross-validation repeated n times (e.g. n = 4, k = 10),
so that each example is tested n times. The most critical example is
thus the one with highest average probabilistic error.

2.1.2 Are expert’s arguments good or should they be
improved?

Here we describe in details the third (3) step of the above algo-
rithm, where the expert is asked to explain the critical example. Us-
ing expert’s arguments, ABML will sometimes be able to explain
the critical example, while sometimes this will still not be entirely
possible. In such cases, we need additional information from expert.
The whole procedure for one-step knowledge acquisition is described
with the next 5 steps:

Step 1: Explaining critical example. In this step, the expert is
asked the following question: ”Why is this example in the class
as given?” The answer can be either ”I don’t know” (the expert is
unable to explain the example) or a set of arguments A1, . . . , Ak

all confirming the example’s class value can be given. If the sys-
tem gets the answer “don’t know”, it will stop this procedure and
try to find another critical example.

Step 2: Adding arguments to example. Arguments Ai are given
in natural language and need to be translated into domain descrip-
tion language (attributes). Each argument supports its claim with
a number of reasons. When a reason is simply an attribute value
of the example, then the argument is simply added to the example.
On the other hand, if reasons mention other concepts, not currently
present in the domain, these concepts need to be included in the
domain as new attributes before the argument can be added to the
example.

Step 3: Discovering counter examples. Counter examples are
used to spot if arguments suffice to successfully explain the
critical example or not. If ABML fails to explain the example,
then the counter examples will show where the problem is. Here,
ABML is first used to induce a hypothesis H1 using previous
learning data only and H2 using learning data together with new
arguments. A counter example is defined as: it has a different class
value from the critical example, its probabilistic error increases in
H2 with respect to H1, and H2 mentions arguments (given to the
critical example) while explaining the counter example.

Step 4: Improving arguments. The expert needs to revise the ini-
tial arguments with respect to the counter example. This step is
similar to steps 1 and 2 with one essential difference; the expert is
now asked ”Why is critical example in one class and why counter
example in the other?” The answer is added to the initial argument.

Step 5: Return to step 3 if counter example found.

3 CASE STUDY: BAD BISHOP

As a case study, we considered the elicitation of the well-known
chess concept of bad bishop. There is a general agreement in the
chess literature and among chess players about the intuition behind
this concept. However, the formalisation of this concept is difficult
even for chess experts, which served as the motivation for choosing
this concept for the ABML-based knowledge-elicitation process.

Watson [13] gives the following definition as traditional: a bishop
that is on the same colour of squares as its own pawns is bad, since



its mobility is restricted by its own pawns and it does not defend
the squares in front of these pawns. Moreover, he puts forward that
centralisation of these pawns is the main factor in deciding whether
the bishop is bad or not.

In the experiments, the dataset for learning consisted of 200 mid-
dlegame positions from real chess games where the black player has
only one bishop3. These bishops were then a subject of evaluation
by the experts4. In 78 cases, the bishops were assessed as bad. Each
position had also been statically evaluated (i.e. without applying any
search) by the evaluation function of the well-known open source
chess program CRAFTY, and its positional feature values5 served as
attribute values for learning. We randomly selected 100 positions for
learning and 100 for testing (stratification was used, preserving the
proportion of positive and negative examples).

In the first iteration of the previously mentioned process, only
CRAFTY’s positional features were used and no arguments have been
given yet. ABCN2 induced all together 4 rules achieving 72% clas-
sification accuracy on the test set. Figure 1 shows the first critical
example, automatically selected by our algorithm.

Figure 1. Why is the black bishop not bad? The experts used their domain
knowledge to produce the following answer: “The black bishop is not bad,
since its mobility is not seriously restricted by the pawns of both players.”

The initial rules failed to classify this example as “not bad”, as
was previously judged by the experts. The following question was
given to the experts: “Why is the black bishop not bad?” It turned
out that the concept mentioned by the experts (see the caption in
Figure 1) was not yet present in the domain attributes - the only
CRAFTY’s positional feature that could potentially describe bishop’s
mobility, BLACK BISHOPS MOBILITY, expresses the number of
squares that the bishop attacks, but doing so takes into account all
pieces (not only pawns) that block the bishop’s diagonals, restrict-
ing its mobility. A new attribute, IMPROVED BISHOP MOBILITY,
was therefore programmed and included into the domain. It is the
number of squares accessible to the bishop, taking into account only
own and opponents pawn structure. Based on the experts’ explana-
tion, the argument “IMPROVED BISHOP MOBILITY is high” was
added to this example.

Taking only the bishop’s mobility into account turned out not to be
enough for ABCN2 to determine the goodness of the bishop. Also,
3 The learning data set and a detailed explanation of domain’s attributes can

be found at: http://www.ailab.si/matej/.
4 The chess expertise was provided by woman grandmaster Jana Krivec and

FIDE master Matej Guid.
5 CRAFTY’s evaluation function uses about 100 positional features.

the method, which at the time only had CRAFTY’s attributes and the
newly included attribute at its disposal, failed to find additional re-
strictions to improve the experts’ argument. The ABML method then
presented the experts with a counter example shown in Figure 2. This
example is classified as “bad”, although the value of the attribute IM-
PROVED BISHOP MOBILITY is high.

Figure 2. Why is the black bishop bad, comparing to the one in Figure 1?
The experts’ explanation was: “The important difference between the two

examples is the following: in the example in Figure 2 there are more pawns
on the same colour of squares as the black bishop, and some of these pawns
occupy the central squares, which further restricts the bishop’s possibilities

for taking an active part in the game.”

The experts were now asked to compare the black bishops in the
two examples: “Why is the black bishop in Figure 2 bad, and the
bishop in Figure 1 is not?” Again, the experts have been asked to
give a description based on their knowledge in the presented do-
main. Based on this description (given in Figure 2), another attribute,
BAD PAWNS, was included into the domain. This attribute evalu-
ates pawns that are on the colour of the square of the bishop (“bad”
pawns in this sense). With some help of the experts, a look-up ta-
ble with predefined values for the pawns that are on the same colour
of squares as the bishop was designed in order to assign weights to
such pawns. According to the previously mentioned Watson’s defi-
nition, centralisation of the pawns was taken into account. The argu-
ment given to the example shown in Figure 1 was then extended to
“IMPROVED BISHOP MOBILITY is high AND BAD PAWNS is
low,” and with this argument the method could not find any counter
examples any more. The new rule covering the critical example is:

if IMPROVED BISHOP MOBILITY≥4 and BAD PAWNS≤32
then BISHOP=NOT BAD; class distribution [0,39]

The above rule evidently uses given argument in its condition. The
method operationalised the first condition of the argument as IM-
PROVED BISHOP MOBILITY≥4 (≥4 stands for high here), while
in the second it decided that the value of 32 is critical for attribute
BAD PAWNS to distinguish a bad and a not bad bishop. The rule
covers 39 learning examples (out of 100) and all of them are from
class NOT BAD, which suggests that the rule is good indeed.

The arguments can consist of both newly included attributes
and/or existing ones. During the process, after they were given
another critical example selected by the method, the experts ex-
pressed the following commentary: “The bishop is not bad, since
the pawns that are on the same square colour are not sufficiently
blocked by opponent’s pawns and pieces.” Their domain knowledge



was again translated into domain description language - attribute
BLOCKED BAD PAWNS was added to the domain. As in the pre-
vious example, the method selected the position shown in Figure 2
as the most appropriate counter example. The “bad” black pawns in
this position are also not blocked by opponent’s pawns and pieces,
but the bishop is regarded as bad anyway. The experts’ explanation
of the crucial difference between the two examples was the same as
above in this case. The existing attribute BAD PAWNS was there-
fore used to improve the argument to “BLOCKED BAD PAWNS is
low AND BAD PAWNS is low”. The method was in this case able
to induce the rest of the rule:

if BLOCKED BAD PAWNS≤3
and BAD PAWNS≤26
and IMPROVED BISHOP MOBILITY>1
then BISHOP=NOT BAD; class distribution [0,19]

Figure 3. Why is the black bishop bad? The following commentary was
given: “The black bishop is bad, since both of its diagonals are blocked by

its own pawns.”

The ABML-based knowledge-elicitation process was used to in-
duce rules to determine both good (i.e. not bad) and bad bish-
ops. The automatically selected critical example shown in Fig-
ure 3 represents an example with other class value than the
previous ones. The experts were in this case asked to de-
scribe why the black bishop is bad. Based on their answer
(see Figure 3), another attribute was introduced into the domain:
BLACK PAWN BLOCKS BISHOP DIAGONAL, which takes into
account own pawns that block the bishops diagonals. The ar-
gument “BLACK PAWN BLOCKS BISHOP DIAGONAL is high”
was added to the example, however a counter example presented in
Figure 4 was found by the method and was shown to the experts. The
question was: “Why is the bishop in Figure 4 not bad, and the bishop
in Figure 3 bad?”

In this case, the experts were unable to express the crucial differ-
ences between the selected examples regarding the goodness of the
bishop in a way that would enable to translate her description into do-
main description language. The description (see Figure 4), although
completely relevant in the given position, is practically impossible to
convert into appropriate attributes, since it would require several very
sophisticated attributes to describe the dynamic factors expressed in
the experts’ commentary. In such a case (i.e. when the expert is un-
able to provide an argument that could be translated into domain de-
scription language), the ABML method searches for another counter

Figure 4. Why is the bishop not bad, comparing to the bishop in Figure 3?
The experts: “The black bishop is not bad, since together with the black

queen it represents potentially dangerous attacking force that might create
serious threats against the opponent’s king.”

example (if available). In this case, the example in Figure 5 was given
to the experts as a counter example to the one in Figure 3.

Figure 5. Why is the bishop not bad, comparing to the bishop in Figure 3?
The experts described the difference: “The black bishop is not bad, since its
mobility is not seriously restricted, taking the pawn structure into account.”

Based on the experts’ commentary (see Figure 5), the existing
attribute IMPROVED BISHOP MOBILITY was used to improve
the argument to “BLACK PAWN BLOCKS BISHOP DIAGONAL
is high AND IMPROVED BISHOP MOBILITY is low”. The fol-
lowing rule, explaining this critical example, can be found in the new
set of induced rules:

if BLACK PAWN BLOCKS BISHOP DIAGONAL≥20
and IMPROVED BISHOP MOBILITY≤3
then BISHOP=BAD; class distribution [18,0]

In total, there were eight critical examples presented to the experts,
however, due to space restrictions we were able to describe only three
of these examples. The final model scored 95% accuracy on the test
set.
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Figure 6. Progress of classification accuracies (CA) through iterations for
ABCN2 (solid line), logistic regression (stars ∗), C4.5 (dashed line) and

classic CN2 (dots).

4 ASSESSMENT AND DISCUSSION

The ABML-based knowledge-elicitation process presented in our
case study consisted of eight (8) iterations. During the process, seven
(7) arguments were attached to automatically selected critical exam-
ples, and five (5) new attributes were included into the domain. After
each iteration, the obtained rules were evaluated on the test dataset.
The improvement of the model is evident: from the initial 72% clas-
sification accuracy (Brier score 0.39, AUC 0.80), the final 95% accu-
racy (Brier score 0.11, AUC 0.97) was achieved after the end of the
process.

The question is, whether these improvements were mainly due to
the addition of new attributes or were the arguments also just impor-
tant? The Figure 6 shows that the arguments also mattered signifi-
cantly. We compared the progressions of classification accuracies of
ABCN2 with some other (“non-ABML” - using only newly added
attributes) machine learning algorithms, namely logistic regression,
decision trees (C4.5), and the classic CN2. The accuracies of all
methods improved during the process, however ABCN2 (which also
used the arguments given by the experts) outperformed all the others.
The obtained results suggest that the performance of other algorithms
could also be improved by adding appropriate new attributes. How-
ever, using arguments is likely to lead to even more accurate models.

The main advantage of ABML over classical machine learning is
the ability to take advantage of expert’s prior knowledge in the in-
duction procedure. This leads to hypotheses comprehensible to ex-
perts, as it explains learning examples using the same arguments as
the expert did. In our case study this was confirmed by chess ex-
perts. According to them, the final set of rules are more alike to their
understanding of the bad bishop concept than the initial rules were.
Furthermore, the final rules were also recognised to be in accordance
with the traditional definition of a bad bishop.

Our domain experts clearly preferred the ABML approach to man-
ual knowledge acquisition. The formalisation of the concept of bad
bishop turned out to be beyond the practical ability of our chess ex-
perts (a master and a woman grandmaster). They described the pro-
cess as time consuming and hard, mainly because it is difficult to
consider all relevant elements. ABML facilitates knowledge acquisi-
tion by fighting these problems directly. Experts do not need to con-
sider all possibly relevant elements, but only elements relevant for a
specific case, which is much easier. Moreover, by selecting only crit-
ical examples, the time of experts involvement is decreased, making
the whole process much less time consuming.

5 CONCLUSION
In this paper, we introduced a new approach to knowledge elicitation
based on the ABML type of machine learning. We studied the effec-
tiveness of this approach in a case study that involves the concept of
bad bishop in chess. This concept requires subtle expert judgement
that is very hard to formalise. Given our experimental findings with
ABML-based knowledge acquisition in this domain, we believe that
this approach will be most helpful in general in areas that require sub-
tle expert judgement, such as medical decision making or aesthetic
evaluation of a painting or a piece of music.

In addition to the case study that illustrates the effectiveness of
ABML-based knowledge acquisition, the paper makes the following
new contributions:

1. The idea of counter examples and a mechanism for their detection.
2. The interactive procedure between the expert and ABML during

knowledge acquisition.
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