
Learning goal-oriented strategies in problem solving

Martin Možina, Timotej Lazar, Ivan Bratko

Faculty of Computer and Information Science
University of Ljubljana, Ljubljana, Slovenia

Abstract

The need for conceptualizing problem solving knowledge has been presented

in several areas, such as in behavior cloning, acquiring teaching knowledge for

intelligent tutoring systems or simply to be used as heuristics in game play-

ing. In this paper, we present an algorithm for learning hierarchical strate-

gies, where a strategy is composed of a sequence of subgoals. Each subgoal

is a prerequisite for the next goal in the sequence, such that achieving one

goal enables us to achieve the following goal. As the sequence of subgoals

concludes with the main goal, such strategy facilitates problem solving in a

step-by-step manner. The algorithm learns from a state-space representation

of the domain. Each state needs to be described with a set of attributes that

are used to define subgoals, hence a subgoal can be seen as a subset of states

having the same attribute-values. We demonstrate the algorithm on three

domains. In the simplest one, learning strategies for mathematical equa-

tion solving, we learn strategies from a complete state-space representation,

where each state corresponds to a learning example. In other two examples,

the 8-puzzle game and prolog programming, the complete state-space is too

extensive to be used in learning, and we introduce an extension of the al-

gorithm that can learn from particular solution traces, can exploit implicit

Preprint submitted to Artificial Intelligence Journal April 26, 2015

conditions and uses active learning to select states that are expected to have

the most influence on the learned strategies.

Keywords:

problem solving, procedural knowledge, strategy learning

1. Introduction

Problem solving in artificial intelligence is often defined as a systematic

search through possible actions in order to reach a predefined goal. With

this technique, computers are capable of solving relatively difficult problems,

yet their solutions are often hard to understand. In computer chess playing,

for example, the moves drawn by a computer are often incomprehensible to a

human expert, because a computer can conduct a far more extensive search

than a human player can. The main question explored in this paper is: can

computers’ problem solving be characterized by some intermediate goals that

would help humans understand (and maybe learn from) computers’ plans and

intentions?

On the other hand, human problem solving does not involve exhaustive

search, yet we are often able to solve some of the difficult problems - with

far less searching and memorizing. Our problem solving relies on under-

standing intrinsic properties of the problem, such as important concepts,

subgoals, and invariant features. However, this knowledge is often stored on

the sub-cognitive layer, which makes our solutions hard to explain. Con-

sider a simple problem of finding some function of an electronic device, say

flash on a camera. An experienced user will be able to quickly find a way to

disable flash on any device, however fail to instruct another user on how to

2

do it without actually trying it first. This problem has been demonstrated

in several domains. For example, it is difficult to reconstruct the skill of

controlling a dynamic system, such as riding a bike or controlling a crane,

mainly due to tacit properties of the expert’s knowledge (Šuc, 2003). The

question is therefore similar: can human problem solving be characterized

by some intermediate goals?

The goal of our paper is not only to explain a single solution to a problem,

but to reconstruct a strategy (or several strategies) from a set of problem-

solving traces. A strategy represents a conceptualization of a domain that

enables humans to understand and solve these problems comfortably. While

the basic domain theory (such as rules in chess or laws of physics) is, in

principle, sufficient for solving problems (e.g. knowing only the rules of

chess could in theory enable optimal play), finding a solution using only the

basic theory requires far too extensive searching. Using a strategy, however,

a problem is represented with some higher-level concepts (subgoals) that

can guide this search. Ideally, the number of these concepts should be low

enough that they can be memorized by a human and enable fast derivation of

solutions. Such conceptualization enables effective reasoning about problems

and solutions in a domain (Možina et al., 2012; Tadepalli, 2008).

Our proposed approach learns a sequence of intermediate subgoals (called

a strategy) that leads you from the initial problem to the final solution. Since

there are usually several possible strategies leading to a solution, we decided

to organize these strategies in an abstract structure called goal-oriented tree.

To illustrate the idea, consider solving an equation with one variable x (letters

3

a = 1 & b = 0 & c = 0

c = 0 & b = 0 a = 1 & c =0

c = 0 b = 0 c = 0

TRUE TRUETRUE

Figure 1: A goal-oriented tree for solving linear equations with one variable.

a, b, c, d represent constants):

ax + b = cx + d

We can solve this equation in three steps: one step to put both terms with

variable x to one side of the equation; the next step to bring constants to

the other side; and the last step to divide the equation by the constant at

variable x. The resulting equation will have the term 1x on one side and the

solution on the other side.

Figure 1 shows a goal-oriented tree learned with our method that embod-

ies all possible strategies implementing the idea presented above. The root

node represents a description of the goal states, which, in our case, are those

with a = 1 (coefficient by the variable x) and b = c = 0. Other nodes in the

tree correspond to intermediate subgoals that lead to the final goal.

Each path from a leaf node to the root represents one possible strategy.

For example, the leftmost strategy starts by achieving goal c = 0. However,

the strategy does not suggest how to achieve this goal, only what to achieve.

A problem solver therefore still needs to figure out a way to achieve this

4

goal; in our case by subtracting the term cx on both sides. The following

goal c = 0 ∧ b = 0 is shared by two strategies that differ only in the order of

steps. The rightmost strategy, however, shares only the main goal. It starts

by achieving c = 0 first, as in the first strategy, but continues by achieving

a = 1. Note that the goal a = 1 ∧ c = 0 can not be achieved in a different

order: if we divided first to get a = 1, subtracting cx would then alter the

value a and therefore not preserve a = 1.

In the following section we proceed by listing related work and comparing

it to our approach. Afterwards we introduce the basic algorithm for learning

goal-oriented strategies from a fully specified state-space. In the fourth sec-

tion we demonstrate the algorithm on a larger domain: eight-puzzle problem-

solving domain, where learning from a full state-space would be impractical,

and computer-generated solution traces were used as learning examples. In

the same section we introduce several extensions to the algorithm, such as

active learning, that improve the quality of the learned goal-oriented trees.

In the last technical section we present a different approach, where solutions

of several human problem solvers (students solving programming exercises

in Prolog) were taken as learning examples. The resulting strategies are

common conceptualizations of Prolog programming of a number of students,

both correct or incorrect. Finally we present our conclusions and pointers

for further work.

2. Related work

The idea of representing problem solving knowledge in terms of goals was

first introduced by several implementations of Advice Languages (Bratko,

5

2012; Michie, 1976). In Advice Languages an expert provides a sorted list

of “pieces-of-advice”, where each advice is composed of a goal and means to

achieve this goal. A goal is specified in terms of descriptive predicates (simi-

lar to our approach), whereas the means is a subset of interesting moves that

should be considered when solving the goal. Therefore, in Advice Languages

each goal has a priority and goals are tested in the descending order of pri-

ority, while in our approach goals are organized in a hierarchy, achieving one

goal is a prerequisite for another goal. Such hierarchical representation can

be seen as a combination of Advice Languages and the means-ends approach

to planning (Bratko, 2012).

An alternative model for representing problem solving knowledge is the

ACT-R (adaptive character of thought – rational) (Anderson, 1993). The

main goal of ACT-R is to model how humans recall “chunks” of informa-

tion from memory and how they solve problems by breaking them down

into subgoals using production rules (called the procedural knowledge). A

production rule specifies how a particular goal can be achieved when a speci-

fied pre-condition is met. The pre-condition part also includes the goal to be

achieved and the consequent contains the steps to achieve the goal. Although

the model from this paper completely ignores the actions, these two represen-

tations are still interchangeable: to translate our representation to ACT-R

the problem solver needs to automatically derive the actions achieving the

selected goal.

The ACT-R theory is the formal background theory of the model-tracing

intelligent tutoring systems (Woolf, 2008). One of the main challenges within

tutoring systems is the difficulty of acquiring problem-solving knowledge from

6

experts. Thus, while ITS are proving to be useful they are also difficult and

expensive to build (Murray, 1999). They require complete domain knowl-

edge, which requires a lot of knowledge engineering. And although several

authoring tools (tools for building an ITS without the need of a program-

mer) were proposed, most of them still require manual elicitation of domain

expertise (Murray, 1999). Furthermore, developers are faced with a similar

problem when they try to update or improve knowledge models of existing

systems. For example, maintaining the Andes Physics Tutor requires a full-

time knowledge engineer (VanLehn et al., 2005). The alternative approach

to author an ITS is to use machine learning to learn domain knowledge au-

tomatically. While it was shown that machine learning can be successful

in building knowledge bases for expert systems (Langley and Simon, 1995)

in terms of performance, such models usually do not mimic the expert’s or

student’s cognitive processes when solving problems. We see our proposal

as an alternative way to learn procedural knowledge, since we abstract from

the specific actions and focus on more general subgoals that are arguably

easier to learn. We have already demonstrated that goal-oriented learning

can be used for learning procedural knowledge in the domain of KBNK chess

ending (Možina et al., 2012).

There have been several attempts to learn strategies in game playing, es-

pecially in chess. The initial attempts focused on the illegality task, where the

problem is to learn how to distinguish legal from illegal positions. The next

research problem was to predict the number of moves needed to win (Bain

and Srinivasan, 1995), which already implicitly defines a short-term strategy:

during playing, one should search for moves that decrease this value. An al-

7

gorithm for learning long term strategies from computer-generated tablebases

was first presented by (Sadikov and Bratko, 2006). In their approach, a chess

ending was first split into phases and then a classification tree was induced

to classify a sample position into a mating phase. A problem solver is then

supposed to find a move (or a series of moves) that transit a position to a

phase closer to a solution. A survey of machine learning in games is given in

(Fürnkranz, 2000).

Planning is another area where machine learning has been used to learn

strategies. Interesting, if only partially related work is learning STRIPS

operators from observed traces (Wang, 1994; Košmerlj et al., 2011). The

idea is to learn the definitions of actions (and not goals) from provided solu-

tion traces. Their main goal is to obtain search-control knowledge to enable

more efficient future planning. However, experiments with hierarchical task

networks (HTN) suggest that planning could also benefit by having a hi-

erarchical goal decomposition. In HTN, tasks are split into primitive and

non-primitives and are hierarchically organized (Kutluhan, 1996). In other

words, such organization defines which goals need to be achieved and in what

order, which is similar to the output of our method. However, the hierarchy

in HTN is provided by the knowledge engineer, while in our case it is learned

automatically.

Learning to solve problem from exercises (Tadepalli, 2008) is another

work researching related ideas. They explored how learning simpler skills

first could help in learning more complex skills and applied it to learning of

problem-solving skills. Their approach was demonstrated in several domains.

For instance, in the 8-puzzle domain they first manually split the domain into

8

8 subproblems (phases) and sorted these subproblems by difficulty. They

then learned a set of macro-operators that can bring you from one phase

to the next phase. A similar approach was also applied to learning control

rules and decision-list policies, in all cases showing improved computational

efficiency of learning. It appears that out work is complementary to the work

of Tadepalli, as our goal hierarchies can be used to decompose domains into

subproblems.

In behaviour cloning, the goal is to develop an automatic controller mim-

icking the problem-solving skills of an experienced operator. The reconstruc-

tion process is similar to our learning approach: gather execution traces and

reconstruct an automatic controller that can perform tasks in the same way

as the operator. An automatic controller is usually a mapping from states

to actions. An extensive review of approaches in behaviour cloning and an

implementation using qualitative modeling is given in Šuc (2003). Note that

our approach can also be used for behaviour cloning, however the actual

actions would then need to be derived by the controller.

3. Learning goal-oriented strategies

3.1. Problem definition

We first define the problem of learning goal-oriented strategies. Items

from the definition are explained in the following text.

Given:

• A state-space representation, where states are the learning examples.

• An attribute-based description of each example.

9

• A goal condition specifying the goal states in terms of attributes.

• A parameter “search depth” defining the maximal search depth.

Learn:

• A goal-oriented tree that covers all learning examples (states). A learn-

ing example is covered if there exists a node in the tree that covers this

learning example. A node covers an example if the goal in the node is

achievable in this example. We say that a goal is achievable if there ex-

ists a path (of length “search depth” or less) from this example (state)

to another state, where conditions of the goal are met.

The algorithm described in this paper assumes that a problem is defined

using a state-space representation. A state-space is a directed graph, where

states (nodes) correspond to different problem situations and arcs between

states correspond to legal transitions between problem situations. States

where the main problem is solved are called goal states. Figure 2 shows a

part of the state-space for the equation problem from the introduction:

ax + b = cx + d. (1)

The initial state contains the original Equation 1. Each following state

contains a new equation obtained by applying a chain of actions on the

path from the initial node. In our case, possible actions include division

and subtraction. For example, after applying the action −cx that subtracts

the term cx from both sides we reach a new state (a − c)x + b = 0x + d,

effectively removing the term with the variable x on the right-hand side of

10

ax + b = cx + d

(a-c)x + b = 0x + d1x + b/a = (c/a)x + d/a

-cx/a

................ (a-c)x + b-d = 0x + 0 (a-c)x + 0 = 0x + d-b

-d -b

................ 1x + 0 = 0x + (d-b)/(a-c)

/(a-c)

Figure 2: A part of the state-space for the equation problem.

the equation. After a series of such actions, a final state is achieved with the

variable x on the left- and its value on the right-hand side. The final state

is the right-bottom state in Figure 2.

Each example should be described with a set of relevant attribute values.

These attributes are used for specifying the goal conditions (when the prob-

lem is solved) and by our algorithm to define subgoals and conditions that

lead to those subgoals. For our example we used four discrete attributes: a

(left coefficient of x), b (left free coefficient), c (right coefficient of x), and d

(right free coefficient). To make the final goal-oriented tree easier to under-

stand, we named the attributes the same as the initial values in the original

Equation 1. Attributes have three possible values: 0, 1, and other. First

two values correspond to actual values of the coefficient (0 and 1), whereas

the last represents any other value. The goal condition of this domain is:

(a = 1 ∧ b = 0 ∧ c = 0) ∨ (c = 1 ∧ d = 0 ∧ a = 0).

Parametrizing the maximal search depth for solving subgoals allows us to

tailor the learned strategies to the expected skill level of the problem solver.

11

MainGoal

SubGoal11 SubGoal12 SubGoal13

p13p12
p11

SubGoal21 SubGoal22 TRUE SubGoal24

p21 p22 p23 p24

TRUE TRUETRUE

p31 p32 p33

Figure 3: The generalized format of a goal-oriented tree.

If the problem is to be solved by a computer, the depth can be set to a higher

value, while for a novice human problem solver (e.g. a math student), the

search depth should be set to a relatively low value.

A goal-oriented tree represents a hierarchy of goals. A generalized goal-

oriented tree is given in Figure 3. A parent goal can be achieved (with some

probability and within the provided maximum depth) if any of the child goals

are achieved. A parent-child pair ParentGoal ← p ← ChildGoal should

therefore be interpreted as: the probability of achieving the ParentGoal goal

from the ChildGoal within the provided number of steps is p. MainGoal is

the predefined final goal to be achieved (e.g. solving an equation, or mating

in chess). Each subgoal is represented as a conjunction of attribute-value

pairs, similar to a complex in rule learning (Clark and Niblett, 1989). A

complete branch in such a tree represents a single problem-solving strategy.

Therefore, if any of the subgoals is achievable in a particular case, then the

corresponding branch leading to the root is the solution for this particu-

lar problem instance. If there are several such subgoals, the corresponding

branches represent alternative solution strategies. And finally, if a subgoal

has no conditions (such as leaves in our example tree), then that particular

12

branch solves all instances of the problem.

The task of goal-oriented learning is to learn a goal-oriented tree that

covers every learning example.

3.2. The algorithm

The skeleton of the algorithm for learning goal-oriented trees is given in

Alg. 1. Description of the algorithm follows.

The inputs of the algorithm are: a) the main goal that defines the solu-

tion of the problem, b) a set of learning examples that are possible states

described with attributes, and c) a parameter depth specifying the maximal

search depth. For now we will assume that the learning examples contain all

possible states. The result of learning is a tree structure where each node

is represented by three values: the subgoal, the probability of achieving the

goal in the parent node, and the set of examples solved by this branch.

13

Algorithm 1: The basic goal-oriented learning algorithm. Methods
selectGoal and ruleLearner are components of the algorithm that
can be changed according to the domain.

input : finalGoal (main goal), learningData(described states from a
state-space), depth(maximal search depth)

output: goalTree(a goal-tree learned from examples)

/* A node in the tree is represented by a triple: (goal

to be solved, solve probability, solved examples) */

1 let goalTree contain only root node (finalGoal, 1.0, ∅).
2 mark finalGoal as unexpanded.
3 while goalTree contains unexpanded goals do

/* Select an unexpanded goal in goalTree */

4 let selectedGoal, prob, prevSolved = selectGoal(goalTree)
5 mark selectedGoal as expanded.

/* For every example determine if the selected goal can

be achieved (within depth steps) or not. */

6 let alreadySolved = positiveExamples = negativeExamples = ∅
7 for each example in learningData do
8 if example in prevSolved then
9 continue /* skip previously solved examples */

10 end
11 if selectedGoal already achieved in example then
12 add example to alreadySolved
13 else if selectedGoal is achievable in depth moves then
14 add example to positiveExamples
15 else
16 add example to negativeExamples
17 end

18 end
/* Learn rules that separate positive from negative

examples: ‘‘IF condition THEN class=positive’’.

*/

19 rules = ruleLearner(positiveExamples, negativeExamples)
20 let newSolved = prevSolved ∪ positiveExamples ∪ alreadySolved
21 for each rule in rules do
22 add (conditions of rule, accuracy of rule, newSolved) as a child

node to selectedGoal node.

23 end

24 end 14

Initially the tree contains a single unexpanded node representing the final

goal. The following main loop continuously processes one unexpanded node

at a time until there are no unexpanded nodes left in the tree.

The loop starts by selecting an unexpanded goal. Our implementation

uses breadth-first search and first expands the goals that are closer to the

root node. A more sophisticated approach would be to expand the most

promising node. However, to make such an approach efficient, we would

also need to implement pruning of unnecessary branches. We have not yet

investigated this option and leave it for future work.

After a goal was selected, the learning data is partitioned in four disjoint

subsets:

previously solved are examples that were already solved by previous goals

in this branch,

already solved are examples where the selected goal is already achieved,

positive examples are examples where the selected goal is achievable within

depth moves, and

negative examples are examples where the selected goal is not achievable.

Given these sets of examples, we need to learn a pattern or a rule that

describes the states where the goal can be achieved. We accomplish that by

learning classification rules to separate positive examples (where the goal can

be achieved) from negative examples (goal can not achieved). The conditions

of the learned rules therefore define subspaces from where the above selected

goal is achievable, hence these conditions become the new subgoals - the

descendants of the selected node.

15

a = 1 & b = 0 & c = 0

c = 0 b = 0

TRUE TRUE

(a) max depth=2

a = 1 & b = 0 & c = 0

TRUE

(b) max depth=3

Figure 4: Goal-oriented trees for solving one equation with one variable with different
maximal depths.

It is the rule-learning algorithm that will mainly determine the properties

of our learned strategy. Do we want specific goals and high probabilities of

achieving one goal from another, or are we looking for less accurate transi-

tions and more general goals? We decided to use the CN2 algorithm (Clark

and Boswell, 1991) with m-estimate of probability as the measure for eval-

uating rules (Džeroski et al., 1993). With the m-parameter we can guide

the algorithm to learn different kinds of hypotheses: higher values of m will

lead to more general strategies, while lower values will result in more specific

strategies. The default value of m-parameter is set to 20 as suggested by

Janssen and Fürnkranz (2010).

The final step of the algorithm adds the new subgoals to the goal-oriented

tree. The conditions of the learned rules become new subgoals, while new

solved examples are all previously solved examples together with all examples

where the selected goal is achievable. The probability of achieving the parent

goal is the class accuracy of the rule generating the new subgoal.

When the Algorithm 1 was used on our equation problem from the intro-

duction, it produced exactly the tree described in introduction. When search

depth was increased to 2 and 3, we obtained the trees from Figure 4.

16

3.3. Another example: two equations with two variables

We will now consider a more complicated example of two equations with

two variables x and y:

ax + by = c (2)

dx + ey = f (3)

Let each state be described with six discrete attributes: a, b, c, d, e and

f that correspond to parameter values from above equations. The possible

values for each attribute are 0, 1, and other, as in the previous example. The

set of learning examples included all possible states of these four attribute

that can be achieved by the two basic operations: dividing an equation by the

coefficient of x or y, and adding (or subtracting) one equation from another,

together consisting of 80 learning examples.

Figure 5 shows two strategies, learned with parameters depth = 1 and

2, respectively. Since the complete tree is too complex to visualize and the

learned strategies from different branches are similar, we selected only one

strategy from the tree. The estimated probabilities on edges are all equal to

1.0 (all rules had pure class distributions without any negative examples).

To better understand the learned strategy, we also prepared a sample

two-equations problem:

2x + 5y = 19 (4)

4x + 2y = 14 (5)

The step-by-step solution of this problem is given in Figure 5 next to the

17

a=1,b=0,d=0,e=1 x=2
y=3

b=0,d=0,e=1 0.4x=0.8
y=3

b=1,d=0,e=1 0.4x+y=3.8
y=3

b=1,d=0 0.4x+y=3.8
-2y=-6

d=0 x+2.5y=9.5
-2y=-6

a=1,d=1 x+2.5y=9.5
x+0.5y=3.5

a=1 x+2.5y=9.5
4x+2y=14

TRUE 2x+5y=19
4x+2y=14

(a) Depth = 1

a=1,b=0,d=0,e=1

b=0,d=0

b=1,d=0

d=0

a=1

TRUE

(b) Depth = 2

Figure 5: Strategies for solving two equations with two variables. Different depths were
used while learning these two strategies. In the left strategy, each goal can be achieved
directly from the goal below with one step only, while in the right strategy the depth was
set to 2, hence we need 1-2 steps to achieve the next goal.

18

strategy computed with parameter depth = 1. The solution starts at the

bottom with the original problem and finishes at the top with the result

x = 2, y = 3. Each step of the solution can be interpreted by looking at the

corresponding subgoal in the strategy.

4. Learning goal-oriented strategies from large state spaces

4.1. Learning from traces

The algorithm in the previous section assumes that a complete problem

state space is given as a set of learning examples. However, a large num-

ber of states could render our algorithm unacceptably slow, and a subset of

examples (states) needs to be selected instead. We decided to sample with

traces, where a set of solutions traces is first constructed, and then each step

from a trace becomes a learning example. Sampling with traces is preferred

over random sampling because it covers all problem-solving phases, whereas

random sampling might neglect some (critical) parts of the state-space.

The learning algorithm from the previous section can already learn from

such sample data. However, as we will show in the remainder of this section,

it performs poorly if not properly adjusted. The necessary improvements to

the algorithm will be described in the following sections.

4.2. Trace coverage and the one strategy – one trace principle

A solution trace is a sequence of states t = s1, s2, . . . , sn, where s1 is the

starting problem, sn is the final state where solution is achieved, and the

two consecutive states si, si+1 are directly connected in the state-space. A

strategy S in a goal-tree covers a trace t if there exists such i < n that the

19

partial trace si, . . . , sn can be derived from this strategy. In other words,

with the selected strategy S we should be able to recreate this trace from the

i-th state onward. We will denote this covering relation as covers(S, t, i).

Using the covers relation we can define the one strategy - one trace prin-

ciple, which requires each learned strategy in the goal-tree to uniquely cover

at least one learning trace. In other words, for each learned strategy there

must exist a trace where this strategy performs best. Or formally, for each

strategy S in a goal-oriented tree, a covered learning trace tk should exist so

that covers(S, tk, i) holds, and no other strategy covers equal (or larger) part

of this trace: @S ′, j : b 6= a ∧ j ≤ i ∧ covers(S ′, tk, j).

The above requirement filters out unnecessary strategies. An interesting

consequence of this requirement is that every strategy will follow at least one

particular learning trace. We believe that such strategies are more likely to

be correct, as they characterize a particular solution.

We implemented the requirement as an additional pre-pruning condition

in the rule-learning method. Every node in the goal-tree now also contains

a list of all uniquely covered traces, and the rule-learning algorithm needs

to learn such rules that cover at least one of these traces. If we need to

achieve greater generalization (over several traces), we can easily extend this

requirement by enforcing that each strategy uniquely covers several traces.

4.2.1. Implicit conditions

A fundamental problem of traces is that they provide mostly only pos-

itive examples for the rule learning. The lack of negative examples leads

to overgeneralized rules, since learning is not considering unseen examples.

Adding implicit conditions to the learned rules turned out to be beneficial.

20

After a rule is learned, there usually exist several conditions that are not

included in the condition part of the this rule, yet they do cover all positive

examples covered by the original rule. Adding such conditions will not de-

crease the number of covered positive examples, however it might decrease the

number of negative examples – both covered and those yet unseen. We call

such conditions implicit conditions. The distinction between the originally-

learned rules and rules with added implicit conditions is analogous to most

general and most specific hypotheses from the version-space theory (Mitchell,

1997).

4.2.2. Active learning

An alternative way of dealing with the lack of negative examples is to

introduce new examples through active learning. In problems where new

examples can be easily generated, we can use active learning to generate

only those additional examples needed to learn more accurate rules.

Algorithm 2 shows our implementation of single rule active learning. In

the first step we use a standard method for learning a single rule from posi-

tive and negative examples, such as described in CN2 algorithm (Clark and

Boswell, 1991).

If the learned rule already covers enough negative examples (in our case

this threshold was set to 200), adding new negative examples is unlikely to

help and the rule can be returned by the method. Otherwise, we need to gen-

erate new examples covered by the learned rule. Our generation technique

executes a breadth-first search in the problem state-space, starting with the

examples already covered by the rule (positive and negative). When a cer-

tain number of new covered examples are found (in our case 20) or when a

21

large number of examples haven been explored (in our case 1000), the search

procedure terminates.

The newly found examples are split into positive, from where the active

goal can be achieved, and negative examples. If new examples contain only

positive examples, then we have failed to generate new negative examples,

and choose to select the rule as best rule and return it. Otherwise new

examples are added to positive and negative learning examples. This loop is

repeated until one of the stopping criteria is fulfilled.

22

Algorithm 2: An algorithm for active learning of a single rule.
The method findBestRule is in our case the same as the method
findBestCondition from the CN2 algorithm (Clark and Boswell,
1991). The threshold for covered negative examples T was set to 200,
the number of generated examples n was set to 20.

input : positiveExamples, negativeExamples
output: rule(a single best rule learned from examples)

1 while True do
2 let rule = findBestRule(positiveExamples, negativeExamples).
3 let neg = number of negative examples covered by rule.
4 if neg > T then
5 return rule.
6 end

/* Generate n new examples from state-space that are

covered by rule. Examples are generated using

breadth-first search starting at currently covered

examples. Search is continued until n new covered

examples are found. If a large number of examples

are explored without finding enough examples, the

search is stopped and less than n examples are

generated. */

7 generate newExamples covered by rule.
8 split new examples to newPositiveExamples and

newNegativeExamples.
9 if len(newNegativeExamples) == 0 then

10 return rule.
11 end
12 add newPositiveExamples to positiveExamples.
13 add newNegativeExamples to negativeExamples.

14 end

23

4.3. Evaluation

4.3.1. Domain: the 8-puzzle game

We chose the 8-puzzle game to demonstrate goal-oriented learning from

traces, as this domain is understandable and large enough (362880 states)

that we need to resort to sampling. In this game, one has to find a series

of moves that lead from an arbitrarily-shuffled position to the goal position,

where tiles are ordered. Figure 6 shows a random starting position and the

final position with ordered values from 1 to 8. In some cases , where it will

be necessary, value 0 will be used to represent the empty tile. In each step

a tile next to the empty tile can be moved to the empty place, so that the

tile and the empty place swap positions. The goal is to find a series of moves

that will lead us from the starting position to the goal position.

Using the 8-puzzle domain, we shall illustrate the problems of the basic

algorithm when learning from a sample of traces, and evaluate the benefits of

suggested improvements in terms of problem solving efficiency. To estimate

the efficiency of learned strategies, we preselected 1000 random starting po-

sitions and used learned strategies to solve these positions. In cases where

several strategies were applicable, we compared their lowest transition proba-

bilities (the weakest link in the strategy) and selected the strategy with high-

est lowest probability (the maxi-min principle). We used the chosen strategy

to select moves until the final position was achieved or the threshold of 1000

moves was reached. Whenever the successive subgoal in the strategy was not

immediately reachable within the number of allowed moves, a random move

was executed. The success rate of a goal-oriented tree was measured with

the following statistics:

24

(a) A random starting position (b) The final position

Figure 6: Two different positions from the eight puzzle game

solved The number of successfully solved positions (out of 1000). This

measure estimates the overall success of the learned strategies.

avg. start dtg Average starting distance-to-goal of solved positions (the

number of steps required to solve the problem if optimal moves are

played). We used this measure to test whether the learned strategies

tend to solve problems that are closer to the solution (low starting dtg).

avg. num of steps Average number of steps needed to solve the problem

(only solved positions were considered).

For the sake of clarity, we decided to use a relatively simple attribute de-

scription of the domain. Each state was described with 81 binary attributes,

where each attribute is an item from a cartesian product between tiles (9

values) and squares (9 values). For example, the attribute “tile 3 at square

2” equals true if tile 3 is at the square 2, and false otherwise. This rep-

resentation enables easy interpretation of the learned strategies. However,

25

Table 1: The tables compare different strategies for solving 8-puzzle with different search
depths, with or without implicit conditions, and with our without active learning. We
used 50 learning traces to train the goal-oriented trees, the m-parameter set to 20. The
learned strategies were tested on 1000 random starting positions. The first row shows the
number of solved problems (out of 1000) within 1000 moves. The last two rows give the
starting average distance-to-goal of solved positions and the average number of steps used
to solve these problems.

(a) Without active learning.

Search depth 3 5 7
Implicit conditions no yes no yes no yes
solved 27 357 139 562 960 993
avg. start dtg 17.63 21.59 21.07 21.43 21.78 21.79
avg. num of steps 230.44 164.80 307.19 171.52 287.10 147.77

(b) With active learning.

Search depth 3 5 7
Implicit conditions no yes no yes no yes
solved 232 538 238 893 572 910
avg. start dtg 21.18 21.66 20.34 21.78 21.25 21.84
avg. num of steps 240.41 434.72 35.56 89.38 57.95 43.20

better attribute description would lead to better strategies. Initial experi-

ments suggest that simply changing these 81 binary attributes to continuous,

where each value is the manhattan distance between the corresponding tile

and a square, results in more accurate strategies. More sophisticated at-

tributes that are usually used in the 8-puzzle problem, such as the overall

manhattan distance or the sequence score (Bratko, 2012), should therefore

result in even more accurate and succinct strategies.

4.3.2. Results and Discussion

Tables 1a and 1b contain results of performance of learned strategies us-

ing implicit conditions, active learning, and different search depths (3, 5, 7).

We can notice that increasing the search depth consistently leads to higher

26

problem-solving success rate, independent of other parameters. This result

was expected, since higher search depths usually mean fewer subgoals in a

goal-oriented tree and are, therefore, easier to correctly conceptualize. How-

ever, these better results come at a higher solving cost: it puts a greater

burden on the problem solver using this strategy, as transition between sub-

goals requires more moves, which is usually more difficult to find.

The results also imply that strategies learned with implicit conditions

will solve problems better than those without implicit conditions. In experi-

ments, with or without active learning, implicit conditions always increased

the number of solved problems. The main reason can recognized by analyz-

ing strategies from Figure 7. Each sub-figure in Figure 7 visualizes the most

commonly used strategy from tested goal-trees; without and with implicit

conditions and active learned strategy with and without implicit conditions.

Search depth in all cases was 5.

Figures 7a and 7b contain strategies learned without and with using im-

plicit conditions, respectively. In both figures, the topmost diagram is the

final goal. The diagrams immediately after the top diagrams are the prereq-

uisite subgoals for solving the main goal. The diagrams following are then

their prerequisites, and so on. For example, in the second diagram of the

first figure, we have tiles with numbers 1-4-7 vertically aligned in the first

column and tile 3 in the top-right square. This strategy, therefore, suggests

achieving this pattern first and afterwards we should be able to reach the

final goal in 88% of cases. This estimation is, however, highly optimistic.

The majority of positions with this 1-4-7-3 pattern are still far from the final

goal, yet our algorithm did not encounter such examples while learning the

27

goal-tree.

This problem is partially solved by adding implicit conditions. In the

second diagram in Figure 7b the small values represent implicit conditions,

namely all positions of other tiles (not 1,4,7,3) that were encountered in the

learning examples. Notice that the tile with value 2 occurred only in the

upper-middle square, which is what makes the probability estimate 88% re-

alistic. Apparently our problem solver (computer) never came across this

1-4-7-3 pattern, while having tile 2 on bottom side. The results from ex-

periments show that such additional conditions significantly increased the

probability of achieving the following goal and therefore increase the success

of the strategy as a whole.

The results for active learning are a bit less favorable. While in cases

with search depth 3 and 5 the success percentage indeed increased, there is a

case (search depth 7 without implicit conditions) where success significantly

decreased with active learning. This result was especially surprising after

we investigated the learned strategies. The strategies learned with active

learning are considerably more specific than those without active learning.

For example, when comparing Figure 7c with Figure 7a, we noticed that

active learning correctly included the tile 2 into the subgoal from the second

diagram. With tiles 1,2,3,4,7 on their final position, it is almost always

possible to solve the puzzle within 5 moves. Furthermore, the subgoals from

the third diagram in Figure 7c, with tiles 2 and 3 in the last column, contains

a position that is typical to a human problem solver. The only flaw of this

diagram is the missing tile 1 in the top left corner, which can be solved with

implicit conditions, as seen in the third diagram of Figure 7d. After a careful

28

0.88

0.74

0.81

0.99

(a) Without implicit
conditions

0.88

0.79

0.69

0.89

0.83

(b) With implicit
conditions

0.86

0.53

0.68

0.87

0.68

(c) Active without
implicit conditions

0.86

0.71

0.46

0.40

0.59

(d) Active with im-
plicit conditions

Figure 7: The figures show the most common strategies of the respective goal-oriented
trees. Search depth was 5 in all cases, the m-parameter was set to 20. Due to space
restrictions, only last 5 steps of strategies are visualized. When a square has no labels, it
can either mean that it is empty or that there could 5 or more different tiles.

29

interpretation of all learned strategies, we conclude that the combination of

active learning and implicit conditions is arguably the best. However, the

question remains: why doesn’t this combination always bear best result in

terms of problem solving efficiency? It does with search depth 3 and 5, but

not with depth 7. This issue requires more experimentation.

Given the results, the most accurate strategy from Figure 7 is the one with

active learning and with implicit conditions. We can translate the diagrams

from Figure 7d into a human-understandable strategy, where we also included

steps from the part of the strategy that was visualized in the diagrams.

Therefore, starting from a random position, do:

1. Move tile 4 to the bottom-left square.

2. Move tile 1 to the square above tile 4.

3. Move tile 2 to the top-right square. At the same time take care that

tile 7 does not occur at the top row and tile 3 is not at top-left square.

Note that we reached the last subgoal from Figure 7d.

4. Move tile 7 to the middle square and empty tile to the bottom-right

square. Tile 3 should not be at the top-left square.

5. Move the empty tile in the following order: left, up, up, left, down.

This exact order is the only sequence of five moves that will reach our

next goal.

6. Move the empty tile down and right to achieve the 1-4-7 column. Then,

move tile 3 on the square below tile 2.

7. Reach pattern 1-2-3 in the top row. This should be quite easy, since

tiles 2 and 3 are already in the right order.

8. Rearrange tiles 5, 6, and 8 to achieve the final goal.

30

We encourage the reader to try the above strategy.

Another relevant question is how the m-parameter impacts learned strate-

gies. To this end, we tested various m-parameters in rule evaluation mea-

sure using active learning, implicit conditions, and both combined. Tables 2

show results of this experiment. The strategy from the last Table 2c, with

combined active learning and implicit conditions, achieves almost perfect ef-

ficiency when m-parameter is set to a low value, in our case 2. Remember

that low m values in m-estimate of probability give higher weight to actual

covered data and lower weight to prior probability. Such learning of rules

is less biased, which can potentially result in more accurate rules. However,

less bias leads to higher variance and to higher probability of overfitting. Yet

apparently, the combination of active learning and implicit conditions seems

to mitigate overfitting.

Having low values of m-parameter introduces another problem: the num-

ber of learned strategies increases. In all three cases, the number of learned

strategies decreased if m-parameter was increased. In cases with low m value,

the number of strategies was around 50. Considering that we only have 50

learning traces, it seems that the majority of learned strategies cover only a

single learning trace. To understand the problem better, we visualized the

last five steps of the most commonly used strategy in Figure 8. The first

diagram is, as always, the final goal. The following two subgoals are similar

to subgoals in the strategy described above. However, these two diagrams

are similar to the previous two diagrams: the squares with fixed tiles are

in symmetrical positions. Therefore, achieving the subgoal from the fourth

diagrams is as difficult as achieving the subgoal from the second diagram,

31

Table 2: Comparison of strategies for solving 8-puzzle. Each column shows results for a
different value of m-parameter in the rule evaluation measure. Learned strategies were
tested on 1000 starting positions, search depth set to 5, number of learning traces is 50.

(a) Only implicit conditions

Parameter m 2 10 20 100 1000
solved 561 651 562 639 706
avg. start dtg 21.66 21.70 21.43 21.20 21.55
avg. num of steps 111.94 196.87 171.52 215.42 345.78
of strategies 49 46 43 40 30

(b) Only active learning

Parameter m 2 10 20 100 1000
solved 294 259 238 198 208
avg. start dtg 20.49 20.59 20.34 20.35 20.98
avg. num of steps 37.85 40.42 35.56 73.93 238.26
of strategies 50 42 42 27 10

(c) Active learning and implicit conditions

Parameter m 2 10 20 100 1000
solved 999 993 893 724 756
avg. start dtg 21.80 21.81 21.78 21.69 21.80
avg. num of steps 116.65 111.10 89.38 126.71 113.82
of strategies 49 43 43 29 8

which effectively makes the last two subgoals irrelevant. Why achieve these

subgoals if it is equally hard to achieve the first subgoal that leads us directly

to the final goal? The subgoals in Figure 8 are due to low m values evidently

over-specified, namely they are fitted to a specific trace.

Results indicate that using active learning and implicit conditions with

low values of m yields the most efficient strategies. This efficiency, however,

comes at the cost of generality. This is acceptable when dealing with a

computer problem solver that can remember many subgoals, however such

strategies do not fit a human problem solver. The parameter m should be

32

0.98 0.96 0.90 0.88

Figure 8: The most often used strategy learned with active learning, with implicit condi-
tions, and m-parameter set to 2.

adjusted to learn strategies that are appropriate to a human problem solver.

33

5. Learning goal-oriented strategies from partially defined state

spaces

In large or complex domains it is impractical or even impossible to fully

specify the state space. Consider, for example, solving programming exer-

cises. The number of possible actions available to a programmer at each step

is enormous, resulting in a large state space with a high branching factor.

Even basic operations, such as finding possible successors to a given state,

can be quite challenging in such domains.

Nevertheless, automatic analysis of programming domains is a rewarding

topic. Acquiring problem-solving knowledge in a form usable for intelligent

tutoring systems is a long-standing issue. Most published approaches use

handcrafted procedural rules; see for example (Corbett and Anderson, 1995).

Recently, Mostafavi and Barnes (2010) suggested a data-driven approach

to constructing intelligent tutoring systems: gather the students’ problem-

solving traces and use them to derive a partial state space. The state space

is indeed only partial, as students’ solutions will not cover the entire space.

However, it does cover the relevant subset of states - those that were actually

reached by students. Initial published results seem to be promising.

Our educational data was gathered during Prolog courses (spring semesters

in 2013 and 2014) at University of Ljubljana (Lazar and Bratko, 2014). The

students had an option of solving lab exercises in a specialized editor where

every keystroke was logged. For each attempt we thus obtained a sequence of

program versions from the empty program to a correct solution, with every

version inserting or deleting one character.

A trivial way of building a state space from such traces would be to

34

consider each version a separate state, with transitions between states cor-

responding to character insertions and deletions. To reduce the state-space

size, we extend transitions to include continuous sequences of character edits.

So, for example, typing the sequence of characters member would result in

just one new state. In other words, a new state is created only when the

student moves the editing cursor to a new location.

We lexed each program version into tokens to remove variability due to

whitespace and comments, and normalized variable and predicate names. A

state space was then formed out of these solutions traces. For each state

we also note whether the program is correct or not according to preset test

cases. A more detailed description of the data and preprocessing steps can

be found in the original paper (Lazar and Bratko, 2014). We used n-grams

of program tokens (with n ranging from 4 to 10) as attributes for describing

states, required for goal-oriented learning.

Given that the problem solvers in this case are the students, the results of

a goal-oriented conceptualization should in fact represent the thought process

of these students. The remainder of this section describes and discusses the

results of goal-oriented learning on two basic Prolog predicates: member (tests

whether an item is in a list) and del (deletes an item from a list).

5.1. The member predicate

In one of the exercises of the Prolog course, the students are asked to

write a program to check whether a list contains a certain element. The fol-

lowing three lines show the most common program implementing the member

predicate:

% member(X, L): test whether element X is in list L.

35

member(X,[X|_]).

member(X,[_|T]):-

member(X,T).

The first line is a comment describing the program’s function. The first

clause (the second line) covers the base case where the selected element is at

the front (head) of the list. If X is not the first element in the list, the second

(recursive) clause will be used to reduce the problem of finding X in the list

L to a simpler problem of finding X in the tail (all elements but the head) of

the list L.

We created a state space with 1170 different states from 149 solution

traces (after applying normalization). We used our algorithm for learning

goal-oriented strategies with maximal search depth set to 1, m-parameter to

20, and using implicit conditions. Active learning was not used since we can

not generate new states.

Figure 9 shows a part of the learned tree. It shows the main branch and

the main alternative at each step. We manually translated sets of n-grams

representing goals to partial programs to increase readability. The root node

represents the main goal, namely the set of programs that pass the test

set. However, the figure shows only the most common program, where the

actual programs may be different from this one. The arrow labels show class

distributions of the learned rules: the number of observed programs matching

the current subgoal from which the next goal was or was not achievable.

We first take a look at the most common strategy, represented by the left-

most, vertical branch. The main goal (solution) is at the top, followed by a

partial solution that leads to that goal. The two lines in the first subgoal are

36

Main goal, e.g.:

member(X,[X|_]).
member(X,[_|T]):-
 member(X,T).

"member(X,[X|_]"
"member(X,[_|T]):-"

"member(X,[X|_])."

"member(X,[X|_"

"|T])."
"member(X,["

"member(X,"
"member(X," & "):-"
"member(X,T).

(50,26)

(69,50)

(13,21)

(28,34)

(24,24)

Figure 9: Main branch and alternatives from the goal-tree for member. Search depth was
set to 1. Values in parentheses represent success rate of goal transition (positive, negative).

37

almost identical to the first two lines of the solution, and in 50 out of 76 cases

the students were able to achieve the main goal with a single continuous edit.

Similarly, the next subgoal in the main branch represents programs with only

the base case, and, again, the students were able to correctly write the head

of the recursive rule (to achieve the next subgoal) with a single transition in

69 out of 119 states.

This result is surprising because it implies that the majority of students

solved the problem by simply typing out the correct program without edit-

ing. The course teachers explained that this is the introductory exercise for

explaining lists in Prolog, and is indeed usually solved on the whiteboard by

the teacher. Our algorithm has thus correctly identified the most commonly

used “strategy” for this problem – copying the solution from the whiteboard.

Some students did solve the exercise on their own. The alternative

branches in Figure 9 shows two strategies potentially describing these stu-

dents. The first such strategy (alternative subgoal in the second row) uses a

named variable T in place where the canonical solution uses an anonymous

variable . This is likely due to novices’ unfamiliarity with anonymous vari-

ables in Prolog. The other alternative branch (in the third row) demonstrates

a different behavior. Here, the students correctly wrote the body of the re-

cursive clause first, and only then corrected the remaining lines. The branch

represents solutions that either made a syntax error, for example having a list

without the closing bracket member(X,[|T):- , or the generic member(X,L)

line was used in the initial rules, and was only later refined into the correct

versions.

38

5.2. The del predicate

In this exercise students implement a predicate to delete an item from a

list. The typical solution of the del predicate consists of two clauses:

% del(X, L, L2): delete element X from L, result is list L2.

del(X,[X|T], T).

del(X,[H|T], [H|T2]):-

del(X,T,T2).

The solution is similar to that of the member predicate. The first clause

deletes the item if it is in the head of the list L, while the second clause

deletes the item from the tail of L.

We collected 142 solution traces, resulting in a state space with 1794

states. Unlike in the member exercise, all students implement the del pred-

icate on their own. For that reason, goal-oriented learning did not provide

meaningful results with maximal search depth set to 1; we had to increase

it to 3. All other settings were the same as in the previous section. Fig-

ure 10 shows the most common strategy and the main alternatives in the

goal-oriented tree constructed by our method.

Again we first look at the main strategy, represented by the left-most

branch. The description of the first subgoal on this branch is relatively short

with only five characters: ”T],[H”. This attribute relates to the head of the

recursive clause, where the last argument must be a compound list with H as

the first element. Once a student figures out this pattern, the probability of

completing the exercise within the next three steps is very high: in 81 out

of 101 cases the students were able to finish the program. This result aligns

with the teachers’ experience – forgetting to add H at the beginning of the

39

Main goal, e.g.:

del(X,[X|T],T).
del(X,[H|T],[H|T2]):-
 del(X,T,T2).

"T],[H"

"del(X,[X|T],T)."
"del(X,[H" & "):-"
" del(X,T,T2)."

"del(X,[H|T],T)."

"del(X,[H|T],L):-"
"del(X,T,L2)"

"del(X,[X|T],T)."
"del(X,[" & "|T],L"):-
" del(X"

(81,20)

(28,26)

(264,219)

(29,16)

(11,11)

Figure 10: Main branch and alternatives from the goal-tree for del. Search depth was set
to 3. Values in parentheses represent success rate of goal transition (positive, negative).

40

recursively processed list is one of the most common and persistent mistakes

for this problem.

The subgoals leading to this goal (third row in Figure 10) are fairly simi-

lar, with a correct base clause and a partially finished recursive clause. How-

ever, both cover only a small number of cases – 54 and 22, respectively – and

have an approximately 50:50 class distribution. We hypothesize that this

part of the state space is difficult to conceptualize. This is also supported by

the teachers’ observation that many students struggle with the definition of

the recursive clause; they often resort to “randomly” tweaking the program,

which can confound the state space.

Going one step further in the learned strategy we found that it starts with

the correct base clause: ”del(X,[X|T],T).”. This node is well represented

in our strategy with at least 483 (264+219) states. In 264 of those states,

students were able to reach the next goal in three or fewer steps, but only

some of those solutions reached the next subgoal. Other students simply

skipped this intermediate subgoal and moved directly to the subgoal with

the ”T],[H” pattern. This result also confirms our previous hypothesis that

it is difficult to formulate intermediate concepts that would help students

getting the last argument right in the recursive clause.

Figure 10 also shows an alternative way of achieving the main goal, where

the recursive rule is completed first. The same issue as before can be found

in this branch: instead of returning a new list L, the recursive clause should

return [H|L2]. This strategy therefore suggests that writing down the re-

cursive call first will aid students getting the “output” in the recursive rule

right. Once a student has figured it out, they are usually able to finish the

41

program quickly. It should be noted, however, that the distribution of this

strategy is notably worse with 29 positive and 16 negative cases.

We demonstrated that learning strategies from solution traces can find

some interesting programming patterns in Prolog. The comments given by

teachers confirm this, as the learned patterns often agree with what they

observed during teaching. The learned strategies are however not perfect,

since the used attribute space (n-grams) is agnostic - the models were learned

without any expert knowledge. A better solution would be to acquire and

consider meaningful concepts provided by teachers. Strategies learned from

such concepts would be, for example, less prone to syntactical errors, which

did cause some misconceptions in the above-described strategies. Moreover,

such strategies would also conform to how student think, being an important

step before these strategies could be used within a programming tutor to

suggest possible ways to proceed in certain situations.

6. Conclusions and future work

We described an algorithm for learning goal-oriented strategies in problem

solving domains. The learned strategies are organized in a tree-like structure,

with the main goal itself at the root of the tree, and the intermediate goals at

other nodes. To achieve the main goal one needs to achieve the intermediate

goals first, starting with a goal from a leaf.

We demonstrated our algorithm on three domains: solving equations, 8-

puzzle game, and Prolog programming. The domain of equation solving is

an example of a small domain, where the complete state-space representation

can be used in learning. This enabled us to learn full strategy trees covering

42

every possible strategy that leads to the solution of a set of equations.

In the case of the larger 8-puzzle game domain, learning from the full

state-space becomes infeasible. Instead, it is necessary to learn from a sample

of data. We described an extension of the algorithm that learns only from

solution traces. Furthermore, we also studied if implicit conditions and active

learning could help to deal with larger domains. Our results suggest that

implicit conditions should always be used, while active learning should be

used in most of the cases. Additionally, we noticed the need to correctly

choose the m-parameter used in rule learning. Having low values will produce

goal-oriented trees with many subgoals with high probabilities of achieving

them, while having high values of m-parameter will product trees with less

goals, however with lower probabilities. We found similar results when testing

with the searchdepth parameter. Therefore, m-parameter and searchdepth

should be tailored to suit the capabilities of an actual problem solver.

In the last part we experimented with the Prolog programming domain.

Due to the large number of options a programmer has at each step it is

virtually impossible to generate the complete state-space. In this paper,

we proposed to use a recently developed method that creates a state-space

from student solutions traces and showed some promising results of applying

our method to a such domain. We showed that the concepts automatically

discovered by our algorithm do correspond to patterns that teachers are

observing during the course.

Each subgoal appearing within the goal-oriented trees is a conjunction of

attribute-values. These attributes and their corresponding values are defined

by the knowledge engineer. In our experiments, we used relatively simple

43

attributes that were a) easy to implement and b) easy to interpret, which

often resulted in learned goals that do not correspond to the same concepts

that humans use in solving these problems. Nevertheless, the emphasis of

this paper is on conveying the idea of goal-oriented learning rather than on

feature construction. A possible technique to alleviate this problem would

be argument-based machine learning (Možina et al., 2007) that facilitates

feature construction through a dialog involving a computer and a domain

expert.

Another potential weakness of the current algorithm is the requirement

to chose the maximal search depth to achieve a goal. In problem solving,

different phases of solving vary by difficulty. Therefore, it would reasonable

to use smaller search depths to solve easier parts and larger search depths

for the more difficult. We could use iteratively increasing search depth as an

alternative to deal with this problem. Furthermore, as a part of the future

work, we also plan to extend our algorithm to domains that involve two-

players, such as the game of chess, by using an adversarial-search mechanism,

e.g. and-or search.

Anderson, J. R., 1993. Rules of the Mind. Lawrence Erlbaum Associates.

Bain, M., Srinivasan, A., 1995. Inductive logic programming with large-scale

unstructured data. In: MACHINE INTELLIGENCE. Oxford University

Press, pp. 233–267.

Bratko, I., 2012. Prolog Programming for Artificial Intelligence. Fourth edi-

tion. Pearson Addison-Wesley, Harlow, England.

44

Clark, P., Boswell, R., 1991. Rule induction with cn2: Some recent improve-

ments. In: Kodratoff, Y. (Ed.), Machine Learning - EWSL-91. Vol. 482

of Lecture Notes in Computer Science. Springer Berlin / Heidelberg, pp.

151–163.

Clark, P., Niblett, T., 1989. The CN2 induction algorithm. Machine Learning

Journal 4 (3), 261–283.

Corbett, A., Anderson, J., 1995. Knowledge tracing: Modeling the acquisi-

tion of procedural knowledge. User Modeling and User-Adapted Interac-

tion 4 (4), 253–278.

Džeroski, S., Cestnik, B., Petrovski, I., 1993. Using the m-estimate in rule

induction. Journal of Computing and Information Technology 1 (1), 37–46.

Fürnkranz, J., 2000. Machine learning in games: A survey. In: MACHINES

THAT LEARN TO PLAY GAMES, CHAPTER 2. Nova Science Publish-

ers, pp. 11–59.

Janssen, F., Fürnkranz, J., 2010. On the quest for optimal rule learning

heuristics. Machine Learning 78 (3), 343–379.

Košmerlj, A., Bratko, I., Žabkar, J., 2011. Embodied concept discovery

through qualitative action models. International Journal of Uncertainty,

Fuzziness and Knowledge-Based Systems 19 (3), 453–475.

Kutluhan, E., 1996. Hierarchical task network planning: Formalization, anal-

ysis, and implementation. Ph.D. thesis, University of MaryLand, College

Park.

45

Langley, P., Simon, H. A., 1995. Applications of machine learning and rule

induction. Communications of the ACM 38 (11), 54–64.

Lazar, T., Bratko, I., 2014. Data-driven program synthesis for hint generation

in programming tutors. In: Intelligent Tutoring Systems - 12th Interna-

tional Conference. pp. 306–311.

Michie, D., 1976. An advice-taking system for computer chess. Computer

Bulletin 2 (10), 12–14.

Mitchell, T., 1997. Machine Learning. McGraw Hill.

Mostafavi, B., Barnes, T., 2010. Towards the creation of a data-driven pro-

gramming tutor. In: Aleven, V., Kay, J., Mostow, J. (Eds.), Intelligent

Tutoring Systems. Springer Berlin Heidelberg, pp. 239–241.

Možina, M., Guid, M., Sadikov, A., Groznik, V., Bratko, I., 2012. Goal-

oriented conceptualization of procedural knowledge. In: Springer (Ed.),

Intelligent Tutoring Systems. Vol. 7315. Chania, Greece, pp. 286–291.

Možina, M., Žabkar, J., Bratko, I., 2007. Argument based machine learning.

Artificial Intelligence 171 (10/15), 922–937.

Murray, T., 1999. Authoring intelligent tutoring systems: An analysis of the

state of the art. International Journal of Artificial Intelligence in Education

(IJAIED) 10, 98–129.

Sadikov, A., Bratko, I., 2006. Learning long-term chess strategies from

databases. Machine Learning 63 (3), 329–340.

URL http://dx.doi.org/10.1007/s10994-006-6747-7

46

Tadepalli, P., 2008. Learning to solve problems from exercises. Computa-

tional Intelligence 24 (4), 257–291.

VanLehn, K., Lynch, C., Schulze, K., Shapiro, J. A., Shelby, R., Taylor, L.,

Treacy, D., Weinstein, A., Wintersgill, M., 2005. The andes physics tutor-

ing system: Lessons learned. International Journal of Artificial Intelligence

in Education 15 (3), 147–204.

Šuc, D., 2003. Machine Reconstruction of Human Control Strategies. IOS

Press.

Wang, X., 1994. Learning planning operators by observation and practice. In:

Proceedings of the 2nd International Conference on AI Planning Systems.

pp. 335–340.

Woolf, B. P., 2008. Building Intelligent Interactive Tutors: Student-centered

strategies for revolutionizing e-learning. Elsevier & Morgan Kaufmann,

Burlington, MA.

47

