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Abstract. Argument Based Machine Learning (ABML) was recently demon-
strated to offer significant benefits for knowledge elicitation. In knowledge ac-
quisition, ABML is used by a domain expert in the so-called ABML knowledge
refinement loop. This draws the expert’s attention to the most critical parts of
the current knowledge base, and helps the expert to argue about critical con-
crete cases in terms of the expert’s own understanding of such cases. Knowledge
elicited through ABML refinement loop is therefore more consistent with ex-
pert’s knowledge and thus leads to more comprehensible models in comparison
with other ways of knowledge acquisition with machine learning from exam-
ples. Whereas the ABML learning method has been described elsewhere, in this
paper we concentrate on detailed mechanisms of the ABML knowledge refine-
ment loop. We illustrate these mechanisms with examples from a case study in
the acquisition of neurological knowledge, and provide quantitative results that
demonstrate how the model evolving through the ABML loop becomes increas-
ingly more consistent with the expert’s knowledge during the process.

1 Introduction

Machine learning has long ago been proposed as a way of addressing the problem of
knowledge acquisition [1]. While it was shown that it can be successful in building
knowledge bases [2], the major problem with this approach is that automatically in-
duced models rarely conform to the way an expert wants the knowledge organized and
expressed. Models that are incomprehensible have less chance to be trusted by experts
and users alike [3]. In striving for better accuracy, modern trends in machine learning
pay only limited attention to the comprehensibility and the intuitiveness of prediction
models [4].

A common view is that a combination of a domain expert and machine learning
would yield the best results [5]. Argumentation Based Machine Learning (ABML) [6]
naturally fuses argumentation and machine learning. One of the advantages over tra-
ditional machine learning methods is better comprehensibility of the obtained models.
Improvement in comprehensibility is especially important in the light of knowledge
acquisition. Through argumentation, ABML enables the expert to articulate his or her
knowledge easily and in a very natural way. Moreover, it prompts the expert to share
exactly the knowledge that is most useful for the machine to learn, thus significantly
saving the time of the expert.

ABML is comprised of two main parts: the modified machine learning algorithm
that can handle and use arguments, and the iterative ABML loop that manages the



interaction between the expert(s) and the machine. The algorithm usually takes all the
credit for successful results, however, the iterative loop is at least as important. After all,
the loop is what the expert and the knowledge engineer actually use during the process
of knowledge elicitation, while the inner workings of the algorithm remain hidden in
the background. Therefore, in this paper, the focus is (solely) on the loop part of the
ABML process.

The paper represents a continuation of the work presented in [7] and [8]. Here we
provide a step-by-step presentation of the knowledge elicitation process with ABML.
Through a case study of acquiring knowledge for a neurological decision support sys-
tem, we analyze and clearly demonstrate the benefits of this particular style of the in-
teraction between the experts and the machine learning algorithm. Along the way, the
reader is alerted to some typical and atypical situations and is shown how to deal with
them. The paper illustrates what is expected from the experts and knowledge engineers
alike, demonstrates the required level of their involvement, and conveys the natural feel
of the human-computer interaction. We also demonstrate quantitatively how the model
obtained with the ABML knowledge elicitation process becomes more and more con-
sistent with the expert’s knowledge.

The organization of the paper is as follows. Chapter 2 describes the case study
domain and experimental setup, and Chapter 3 shortly describes the ABML algorithm,
focusing mainly on its modifications in view of the current application. The ABML
iterative process, the main part of the paper, is in Chapter 4. We finish with an evaluation
of the knowledge elicitation process and conclusions.

2 Domain Description and Experimental Setup

We are developing a neurological decision support system (DSS) to help the neurolo-
gists differentiate between three types of tremors: essential, Parkinsonian, and mixed
tremor (comorbidity, see [8] for more detail). The system is intended to act as a second
opinion and a teaching tool for the neurologists. Although several sets of guidelines for
diagnosing both essential and Parkinsonian tremor do exist [9], none of them enjoys
general consensus in the neurological community.

The data set consisted of 114 patients. These were divided into a learning set with
47 examples and a test set with 67 examples. The class distribution was: 50 patients
diagnosed with essential tremor (ET), 23 patients with Parkinsonian tremor (PT), and 41
patients with a mixed-type tremor (MT). The patients were described by 45 attributes.

According to the domain experts, some of the characteristics reflected in these at-
tributes speak in favour of a particular tremor type as follows.

Essential tremor is characterized by postural tremor, kinetic tremor, harmonics, es-
sential spiral drawings, positive family anamnesis etc.

Parkinsonian tremor is characterized by resting tremor, bradykinesia, rigidity, Parkin-
sonian spiral drawings etc.

Mixed tremor implies presence of both essential tremor and Parkinsonian tremor.

However, according to domain experts it is difficult to combine these characteristics
into sensible rules for successful diagnosis.



3 Argument Based Machine Learning (ABML)

Argument Based Machine Learning (ABML)[6] is machine learning extended with con-
cepts from argumentation. In ABML, arguments are used as means for experts to elicit
some of their knowledge through explanations of the learning examples. The experts
need to focus on one specific case at the time only and provide knowledge that seems
relevant for this case. We use the ABCN2 [6] method, an argument based extension
of the well-known CN2 method, that learns a set of unordered probabilistic rules from
examples with attached arguments, also called argumented examples.

The problem domain described in this paper contains a class variable with three
values. According to the domain expert opinion, it was appropriate to translate our
three-class problem into two binary-class problems solved by two binary classifiers.
The first binary classifier distinguishes between ET and non-ET, the second between
PT and non-PT. A new case is then probabilistically classified roughly as follows. The
first classifier assigns probability p(ET) to class ET, the second p(PT) to class PT. The
predicted probability of MT is then p(MT) = 1 – p(ET) – p(PT). ET and MT are merged
into EMT class, while PT and MT are merged into PMT class. The two binary classifiers
are independent, so it may happen that p(MT) < 0. In such cases the three probabilities
are adjusted to satisfy the formal properties of probabilities (see [8] for details).

3.1 ABML knowledge refinement loop

The ABML knowledge refinement loop consists of the following steps:

Step 1: Learn a hypothesis with ABCN2 using given data.
Step 2: Find the “most critical” example and present it to the expert. If a critical ex-

ample can not be found, stop the procedure.
Step 3: Expert explains the example; the explanation is encoded in arguments and

attached to the learning example.
Step 4: Return to step 1.

In the sequel, we explain (1) how we select critical examples, and (2) how we obtain all
necessary information for the chosen example.

Identifying critical examples. A critical example is an example the current hypoth-
esis can not explain very well. As our method gives probabilistic class prediction, we
first identify the most problematic example as one with highest probabilistic error. To
estimate the probabilistic error we used a k-fold cross-validation repeated n times (e.g.
n = 4, k = 5), so that each example is tested n times. The critical example is thus
selected according to the following two rules.

1. If the problematic example is from class MT, it becomes the critical example.
2. Otherwise, the method will seek out which of the rules is the culprit for example’s

misclassification. As the problematic rule is likely to be bad, since it covers our
problematic example, the critical example will become an example from PT or
MT class (or ET or MT) covered by the problematic rule. Then, the expert will be
asked to explain what are the reasons for the patient’s diagnosis. Domain expert’s
explanations should result in replacing the problematic rule with a better one for
the PMT (or EMT) class, which will not cover the problematic example.



Are the expert’s arguments good enough or should they be improved? Here we
describe in details the third step of the above algorithm:

Step 3a: Explaining a critical example. If the example is from the MT class, the ex-
pert can be asked to explain its Parkinsonian and essential signs (which happens
when the problematic example is from MT) or to explain only one of the diseases.
In the other two cases (ET or PT), the expert always explains only signs relevant
to the example’s class. The expert then articulates a set of reasons confirming the
example’s class value. The provided argument should contain a minimal number of
reasons to avoid overspecified arguments.

Step 3b: Adding arguments to an example. The argument is given in natural language
and needs to be translated into domain description language (attributes). If the ar-
gument mentions concepts currently not present in the domain, these concepts need
to be included in the domain (as new attributes) before the argument can be added
to the example.

Step 3c: Discovering counter examples. Counter examples are used to spot if an ar-
gument is sufficient to successfully explain the critical example or not. If not,
ABCN2 will select a counter example. A counter example has the opposite class
of the critical example, however it is covered by the rule induced from the given
arguments.

Step 3d: Improving arguments with counter examples. The expert needs to revise
his initial argument with respect to the counter example.

Step 3e: Return to step 3c if counter example found.

4 Knowledge Elicitation Process for Differentiating Tremors

In this section, we analyze the complete knowledge elicitation process for differentiat-
ing between essential and Parkinsonian tremors. We identify the main effects of each
iteration on the process.

Iteration 1 Example E.65 (classified as MT) was the first critical example selected by
our algorithm. The expert was asked to describe which features are in favor of ET and
which features are in favor of PT. He explained that the presence of harmonics speaks
in favor of ET, while the presence of bradykinesia speaks in favor of PT. Both features
were selected as the most influential ones.

The presence of harmonics was represented by four attributes in the data set, each
one with possible values of true and false. The expert explained that just one of these
feature values being true already suffices to decide in favor of ET. Similarly, the pres-
ence of bradykinesia was indicated with two attributes, one for the left side and one for
the right side, with possible values in range from 0 (not indicated) to 5 (high). The ex-
pert explained that the side does not play any particular role for differentiating between
ET and PT, and that any value higher than zero already speaks in favor of PT.

The expert’s explanation served the knowledge engineer to induce two new at-
tributes: (1) HARMONICS, with possible values true (indicating the presence of har-
monics) and false, and (2) BRADYKINESIA, with possible values true (bradykinesia is
present on the left side or on the right side) and false (bradykinesia was not indicated



on either side). At the same time the original six attributes (indicating harmonics and
bradykinesia) were excluded from the domain, since it is their combination (reflected
in the expert’s argument) that provides relevant information according to the expert.

Based on the expert’s explanation, the reasons (1) “HARMONICS is true” and (2)
“BRADYKINESIA is true” were added as the arguments for ET and PT, respectively, to
the critical example E.65.

The method selected E.67 as a counter example for the expert’s argument in favor
of ET, and E.12 as the counter example for his argument in favor of PT. The expert was
now asked to compare the counter example E.67 with the critical example E.65, and to
explain what is the most important feature in favor of ET in E.65 that does not apply to
E.67. Similarly, he was asked to explain what is the most important feature in favor of
ET in E.65 that does not apply to E.12.

It turned out that both counter examples occurred as consequences of the following
errors in the data set. In case of E.67, one of the original four attributes for harmonics
was set to true, although the actual value was discovered to be false upon examination.
Consequently, the value of the newly added attribute HARMONICS in E.67 had to be
corrected from true to false. In case of E.12, upon the examination of the feature values,
the expert realized that some strong arguments in favor of PT were overlooked at the
time of diagnosis. After careful deliberation, the class of E.12 was modified from ET to
MT by the expert.

In this case, the method actually helped to discover errors in the data set. Improving
the arguments turned out to be unnecessary: the correction of the aforementioned errors
in the data set resulted in no further counter examples. Thus, Iteration 1 was concluded.

Iteration 2 Upon entering into Iteration 2, E.61 (MT) was selected as a critical ex-
ample. The expert was asked to describe which features are in favor of ET. He gave
two features as an explanation: the presence of postural tremor and the presence of
resting tremor. Similarly as in Iteration 1, these two features were each represented by
two attributes. Again, the expert explained that neither the side nor the magnitude of a
non-zero value play any particular role in differentiating between ET and PT.

The expert’s explanation served to induce two derived attributes: (1) POSTURAL,
with possible values true (indicating the presence of postural tremor) and false, and
(2) RESTING, with possible values true (indicating the presence of resting tremor) and
false. The original four attributes (indicating the presence of postural tremor and resting
tremor) were excluded from the domain. The reason “POSTURAL is true and RESTING
is true” was added as the argument for ET to the critical example E.61.

The expert’s argument did not prove to be sufficient to produce a rule with pure
distribution: the method selected E.32 as the counter example. The expert was asked to
compare the counter example E.32 with the critical example E.61.

The expert spotted the presence of bradykinesia in E.32 as the most important dif-
ference, and thus extended his argument to “POSTURAL is true and RESTING is true
and BRADYKINESIA is false.”

A new counter example was found by the method: E.51. It turned out that this
counter example occurred as a consequence of another misdiagnosis. After reviewing
the feature values describing the patient’s conditions, the expert modified the class of
E.51 from MT to PT. No further counter examples were found.



Iteration 3 Critical example E.55 (MT) was presented to the expert. The expert gave
two features in favor of ET: the presence of postural tremor and the presence of kinetic
tremor. He also gave two features in favor of PT: the presence of bradykinesia and
the presence of rigidity in upper extremities. Kinetic tremor and rigidity were each
represented by two attributes, similarly as in some aforementioned cases.

The knowledge engineer induced two attributes: (1) KINETIC, with possible values
true (indicating the presence of kinetic tremor) and false, and (2) RIGIDITY, with pos-
sible values true (indicating rigidity in upper extremities) and false. The original four
attributes (indicating the presence of kinetic tremor and rigidity in upper extremities)
were excluded from the domain.

Expert’s explanation lead to (1) “POSTURAL is true and KINETIC is true,” and
(2) “BRADYKINESIA is true and RIGIDITY is true” as the arguments for ET and PT,
respectively, to the critical example E.55.

The method selected E.63 as a counter example for the argument in favor of ET.
The expert explained what is the most important feature in favor of ET in the critical
example E.55 that does not apply to E.63. He contemplated that ET typically occurs
much earlier than PT, and advocated that if tremor occurs before the age of 50 (as in
E.55), it is usually ET. There were no counter examples for the argument in favor of PT.

The knowledge engineer realized that there was no suitable attribute in the domain
that would express exactly what the expert had just explained. There were similar at-
tributes AGE (indicating the age of the patient) and TREMOR.PERIOD (indicating the
number of years since the tremor was diagnosed). They were used to construct a new
attribute TREMOR.START, indicating the patient’s age when the tremor was diagnosed.

The argument in favor of ET was extended to “POSTURAL is true and KINETIC is
true and TREMOR.START < 50.” No more counter examples were found.

Iteration 4 Critical example E.51 (MT) was presented to the expert. The expert ex-
plained that positive anamnesis and postural tremor are in favor of ET, while qualitative
assessment (given by the neurologist at the time of the examination of a patient) is in
favor of PT. The arguments to E.51 therefore became (1) “ANAMNESIS is positive and
POSTURAL is true” for ET, and (2) “QUALITATIVE.ASSESSMENT is PT” for PT.

With the help of the counter example E.62 the argument for ET was extended to
“ANAMNESIS is positive and POSTURAL is true and BRADYKINESIA is false.” Another
counter example E.21, for argument in favor of PT, turned out to be misdiagnosed. The
class of E.21 was modified from ET to MT. There were no further counter examples.

Iteration 5 Critical example E.42 (MT) was presented to the expert. The qualitative
assessment by the neurologist was given as sufficient argument in favor of ET. The
assessment of free-hand spiral drawings were in favor of PT, as can be seen from the
following explanation by the expert: “The assessment of the free-hand spiral in some of
the four observations in the original data is Parkinsonian, and none of them indicative
of essential tremor.”

This explanation lead to a new attribute SPIRO.FREE.PT.ONLY. By analogy, an-
other attribute, SPIRO.FREE.ET.ONLY, was introduced, while the four original attributes
were excluded from the domain upon consultation with the expert. The arguments to
E.42 became “QUALITATIVE.ASSESSMENT is ET” for ET, and “SPIRO.FREE.PT.ONLY
is true” for PT.



No counter examples opposing the argument for ET were found, while E.33 was
given as the counter example against the argument for PT. The expert mentioned template-
based spiral drawings: “The assessment of the template-based spiral in some of the four
observations (attributes) in the original data are essential in E.42, and none of them is
Parkinsonian. This does not apply to E.33.”

Similarly as in the above case, new attributes SPIRO.TEMPLATE.PT.ONLY and
SPIRO.TEMPLATE.ET.ONLY were introduced, and the four original attributes were
excluded from the domain. The argument attached to E.42 for PT was extended to
“SPIRO.FREE.PT.ONLY is true and SPIRO.TEMPLATE.ET.ONLY is false.” This time
no counter examples were found by the algorithm.

Iteration 6 Critical example was E.39 (MT). The expert’s argument for ET were postu-
ral tremor and the qualitative assessment in favor of ET. The presence of resting tremor
was the argument for PT.

No counter examples opposing the argument in favor of ET were found. Counter ex-
ample against the argument in favor of PT became E.45. When comparing this counter
example with the critical example, the expert spotted an important difference: the lack
of harmonics in the critical example, and their presence in the counter example. The
argument in favor of PT was thus extended to “RESTING is true and ANY.HARMONICS
is false.” No new counter examples were found.

Iteration 7 Iteration 7 turned out to be exceptionally short. When the expert was asked
to give arguments in favor of ET and PT for the critical example E.26 (MT), he realized
that there were no valid arguments in favor of ET. The class was therefore changed from
MT to PT.

Iteration 8 Critical example E.30 (ET) was presented to the expert. The expert was
asked to describe which features are in favor of ET. He gave two features as an explana-
tion: the presence of kinetic tremor and the lack of bradykinesia. No counter examples
were found.

Iteration 9 Iteration 9 also demanded very little time from the expert. He was pre-
sented with critical example E.36 (MT). The expert gave two features in favor of ET:
the presence of kinetic tremor and the presence of postural tremor. No counter examples
were found to the expert’s arguments.

Iteration 10 The expert observed critical example E.21 (MT). The expert gave the
following explanation in favor of ET: “Qualitative assessment of both free-hand and
template-based spiral in some of the observations (attributes) are essential, and none of
them is Parkinsonian.” The knowledge engineers thus attached the following argument
to the critical example: “SPIRO.FREE.ET.ONLY is true and SPIRO.TEMPLATE.ET.ONLY
is true.” No counter examples and no further critical examples were found.

Review of the model At the end of the iterative procedure, the expert is asked to re-
view the final model. Upon examination of the rules, the expert noticed the following
rule that was in contradiction with his general knowledge about the domain.

IF TREMOR.START > 61 THEN class = EMT; [16,0]

The newly added attribute TREMOR.START occurred in this counter-intuitive rule (ac-
cording to the expert) and now became the subject of careful examination.



The expert realized that the values of the attribute TREMOR.PERIOD from which
TREMOR.START was calculated, may indeed reflect the number of years since the
tremor was diagnosed, but this attribute actually does not reflect the age when the tremor
actually started. The reason for this was pointed out by the expert: the patients with ET
tend to visit the neurologist only when the tremor starts to cause them problems in
everyday life, and this is usually several years after it actually first occurred. While
it is commonly accepted that ET typically occurs much earlier than PT, the attribute
TREMOR.START simply cannot reflect the time of its occurrence. The expert and the
knowledge engineer decided to exclude the attribute TREMOR.START from the domain.

As a consequence, another critical example emerged. The expert was now asked to
improve the argument “POSTURAL is true and KINETIC is true,” given to critical exam-
ple E.55 in Iteration 3, again having E.63 as a counter example. He realized that there
is another important difference between E.63 and E.55: the presence of resting tremor
in E.63. He extended his argument to “POSTURAL is true and KINETIC is true and
RESTING is false.” The method found no counter examples to the expert’s argument.

The expert revised the newly induced rules and found them all to be acceptable. No
further critical examples were found, and the knowledge elicitation process concluded.

5 Results

The number of rules after each iteration varied from 12 to 15. Table 1 shows the fi-
nal model, i.e., rules obtained after the end of the knowledge elicitation process. The
domain expert evaluated each rule according to the following criteria.

Counter-intuitive: an illogical rule that is in contradiction with expert knowledge.
Reasonable: a rule consistent with expert knowledge, but insufficient to decide in favor

of ET or PT on its basis alone.
Adequate: a rule consistent with expert knowledge, ready to be used as a strong argu-

ment in favor of ET or PT.

Figure 1 demonstrates how the model became increasingly more consistent with the
expert’s knowledge during the knowledge elicitation process. The expert’s evaluations
of the initial and final rules are significantly different (p=0.026 using Mann-Whitney-
Wilcoxon non-parametric test). All rules in the final model are consistent with the do-
main knowledge, and five of them were marked by the expert as sufficiently meaningful
to determine the type of tremor by themselves. The other nine rules (marked as rea-
sonable by the expert) could alone not be improved by the method to adequate rules,
as there were no counter examples in the data set, and therefore the method did not
have any reason to further specialize these rules. A larger number of learning examples
might, however, result in a greater number of adequate rules.

During the process of knowledge elicitation, 15 arguments were given by the expert,
14 new attributes were included into the domain, and 21 attributes were excluded from
the domain. After each iteration, the obtained model was evaluated on the test data set.
If all the rules that triggered were for the class EMT (PMT), then the example was
classified as ET (PT). In cases where the rules for both classes triggered, the example
was classified as MT.



Fig. 1: The graph on the left side shows the average of expert’s evaluations of the rules (0 -
counter-intuitive, 1 - reasonable, 2 - adequate) obtained after each iteration of the knowledge
elicitation process. The graph on the right side shows the percentage of counter-intuitive (the
lower curve) and adequate (the upper curve) rules among all rules obtained after each iteration.

We compared classification accuracies improvements for ABCN2, Naive Bayes
(NB), and kNN.3 The ABCN2’s classification accuracy on the test set improved from
the initial 52% (NB: 63%; kNN: 58%) to the final 82% (NB: 81%; kNN: 74%). This
result shows that the higher consistency with expert’s knowledge is not obtained at the
expense of classification accuracy.

The overall expert’s time involvement was about 20 hours, which is rather low con-
sidering the high complexity of the presented domain. The relevance of the critical and
counter examples shown to the expert is also reflected by the fact that they assisted the
expert to spot occasional mistakes in the data.

6 Conclusions

We described a complete knowledge elicitation process with Argument Based Machine
Learning (ABML) for a neurological decision support system. A neurological domain,
namely differentiating between essential, Parkinsonian, and mixed tremor, served as a
case study to demonstrate the following benefits of ABML for knowledge elicitation.

1. It is easier for domain experts to articulate knowledge; the expert only needs to
explain a single example at the time.

2. It enables the expert to provide only relevant knowledge by giving him or her criti-
cal examples.

3. It helps the expert to detect deficiencies in his or her explanations by providing
counter examples.

Our step-by-step presentation of the knowledge elicitation process with ABML can
serve the reader as a guideline on how to effectively use the argument-based approach to
knowledge elicitation. In addition, the main result of this paper is a quantitative demon-
stration of how the rules become increasingly more consistent with expert’s knowl-
edge during the ABML knowledge elicitation process. It is also interesting to note that
ABML loop resulted in a simplification of the original set of attributes.

3 In Naive Bayes, the conditional probabilities were estimated by relative frequencies for dis-
crete attributes and by LOESS for continuous attributes. In kNN, the Euclidian distance was
selected and k was set to 5.



Table 1: The rules after the end of the knowledge elicitation process. The condition and class
columns show the condition and the consequent parts of a rule. Columns + and − stand for the
number of positive and negative examples covered, respectively. All rules have pure distributions
– they do not cover any examples from the opposite class. Column E stands for the expert’s
evaluation (0 - counter-intuitive, 1 - reasonable, 2 - adequate) of a rule.

# Condition Class + − E

1 IF QUALITATIVE.ASSESSMENT = ET EMT 21 0 1
2 IF BRADYKINESIA = false EMT 18 0 1
3 IF BRADYKINESIA = true AND RIGIDITY = true PMT 17 0 2
4 IF QUALITATIVE.ASSESSMENT = ET AND POSTURAL = true EMT 16 0 1
5 IF RIGIDITY = false AND KINETIC = true EMT 15 0 1
6 IF KINETIC = true AND BRADYKINESIA = false EMT 13 0 1
7 IF SPIRO.FREE.PT.ONLY = true AND SPIRO.TEMPLATE.ET.ONLY = false PMT 13 0 1
8 IF HARMONICS = true EMT 12 0 2
9 IF RESTING = true AND HARMONICS = false AND RIGIDITY = true PMT 12 0 2

10 IF POSTURAL = true AND KINETIC = true AND RESTING = false EMT 10 0 1
11 IF QUALITATIVE.ASSESSMENT = PT PMT 10 0 1
12 IF RESTING = false AND POSTURAL = true AND BRADYKINESIA = false EMT 8 0 2
13 IF POSTURAL = true AND ANAMNESIS = positive AND BRADYKINESIA = false EMT 8 0 2
14 IF SPIRO.FREE.ET.ONLY = true AND SPIRO.TEMPLATE.ET.ONLY = true EMT 7 0 1
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