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In Progressive chess, rather than just making one move per turn, players play progressively 
longer series of moves. Combinatorial complexity generated by many sequential moves 
represents a difficult challenge for classic search algorithms. In this article, we present 
the design of a state-of-the-art program for Progressive chess. The program follows the 
generally recommended strategy for this game, which consists of three phases: looking for 
possibilities to checkmate the opponent, playing sequences of generally good moves when 
checkmate is not available, and preventing checkmates from the opponent. For efficient and 
effective checkmate search we considered two versions of the A* algorithm, and developed 
five different heuristics for guiding the search. For finding promising sequences of moves 
we developed another set of heuristics, and combined the A* algorithm with minimax 
search, in order to fight the combinatorial complexity. We constructed an opening book, 
and designed specialized heuristics for playing Progressive chess endgames. An application 
with a graphical user interface was implemented in order to enable human players to play 
Progressive chess against the computer, and to use the computer to analyze their games. 
The program performed excellently in experiments with checkmate search, and won both 
mini-matches against a human chess master. We also present the findings of self-play 
experiments between different versions of the program.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Game playing has traditionally been described as an excellent test bed for designing and studying new algorithms. Some 
games are particularly challenging because the number of reachable, indistinguishable states far exceeds the storage and 
computational abilities of present-day computers, thus representing difficult problems even for state-of-the-art algorithms. 
In this paper, we focus on one such challenging game: a chess variant called Progressive chess. In this game, rather than 
just making one move per turn, players play progressively longer series of moves. White starts with one move, Black plays 
two consecutive moves, White then plays three moves, and so on.

Chess variants comprise a family of strategy board games that are related to, inspired by, or similar to the game of chess. 
They can differ from standard chess in various ways such as the board layout, the number of players, the movements of the 
pieces, the pieces themselves, the starting positions of the pieces, the dynamics of the game, etc. Progressive chess is one 
of the most popular chess variants [1]; probably hundreds of Progressive chess tournaments have been held during the past 
fifty years [2], and several aspects of the game have been researched and documented [3–6].
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From a game-theoretic perspective, Progressive chess shares many properties with chess. It is a finite, sequential, perfect 
information, deterministic, and zero-sum two-player game. The state-space complexity of a game (defined as the number 
of game states that can be reached through legal play) is comparable to that of chess, which has been estimated to be 
around 1046 [7]. However, the per-turn branching factor is extremely large in Progressive chess, due to the combinatorial 
possibilities produced by having several steps per turn. In another chess variant, Arimaa, where “only” four steps per turn 
are allowed, on average there are about 17,000 legal moves per turn. Up until the previous year, human players prevailed 
over computers in every annual “Arimaa Challenge” competition, and the high branching factor is considered as the main 
reason why Arimaa is difficult for computer engines [8]. We thus expect Progressive chess to provide a challenging new 
domain in which to test new algorithms, ideas, and approaches.

We set our goal to develop a strong program for Progressive chess that would eventually be able to achieve (and possibly 
surpass) the human world champion’s level. While conventional chess programs can be easily adapted to some chess vari-
ants [9], in Progressive chess this is not the case. The main reason is that the combinatorial complexity, caused by having 
many sequential moves represents a difficult challenge for classic search algorithms. We know of no past attempts to build 
Progressive chess playing programs. In the 90’s, a strong Progressive chess player from Italy, Deumo Polacco, developed 
Esaù, a program for searching for checkmates in Progressive chess. According to the program’s distributor, AISE (Italian 
Association of Chess Variants), it was written in Borland Turbo-Basic, and it sometimes required several hours to find a 
checkmate. To the best of our knowledge, there are no documented reports about the author’s approach, nor whether there 
were any attempts to extend Esaù to a complete Progressive chess playing program.

The course of the article is as follows. We start with a description of the game of Progressive chess. In Section 3, we 
describe the design of our Progressive chess playing program. In Section 4, we focus on the specific challenge of searching 
for checkmates. We continue with a more generally problem of finding generally promising sequences of moves (Section 5). 
In Section 6, we describe how the program was optimized for opening and endgame play. Experimental design and results 
of the experiments are presented in Sections 7 and 8, respectively.

An earlier version of the program was presented at the 14th International Conference on Advances in Computer Games 
(ACG 2015) [10]. The program has been significantly improved since then. In this extended article we present the reasons 
for these improvements. In particular, a lot of attention has been payed to finding generally promising sequences of moves 
(when checkmate is not available), while searching for checkmates has also been substantially improved. This article also 
presents a wider range of experiments, and gives a more detailed introduction to the game of Progressive chess.

2. Progressive chess

2.1. The rules of the game

Rules for chess [11] apply, with the following exceptions:

• Players alternately make a sequence of moves of increasing number.
• A check can be given only on the last move of a turn.
• A player may not expose his king to check at any time during his turn.
• A king in check must get out of check with the first move of the sequence.
• A player who has no legal move or who runs out of legal moves during his turn is stalemated and the game is drawn.
• En passant capture is admissible on the first move of a turn only.

There is an additional rule, rarely invoked: the game is a draw if during ten consecutive turns there is neither a capture nor 
a pawn move, and neither player can show an impending mate.

There are two main variants of Progressive chess: Italian Progressive chess and Scottish Progressive chess. The former 
has been researched to a greater extent, and a large database of games (called “PRBASE”) has been assembled. In Italian 
Progressive chess, a check may only be given on the last move of a complete series of moves. In particular, if the only way 
to escape a check is to give check on the first move of the series, then the game is lost by the player in check. In Scottish 
Progressive chess, check may be given on any move of a series, but a check also ends the series. It has been shown that the 
difference very rarely affects the result of the game [12].

2.2. Strategy

The general strategy for both players can be summarized as follows. Firstly, look for a way to checkmate the opponent’s 
king. Secondly, if a checkmate cannot be found, aim to destroy the opponent’s most dangerous pieces whilst maximizing 
the survival chances of your own. Finally, before executing an intended sequence of moves, ensure that the opponent cannot 
checkmate your own king on the next turn.

Searching for checkmates — for both sides — is thus a very important task in this game. The left diagram in Fig. 1 shows 
an example of a typical challenge in Progressive chess: to find the sequence of moves that would result in checkmating the 
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Fig. 1. Left: black to move checkmates in 8 consecutive moves. Right: white to move checkmates in 7 consecutive moves.

opponent. Black checkmates the opponent on the 8th consecutive move (note that white king should not be in check before 
the last move in the sequence). In the right-side diagram, the checkmate can be delivered by White in 7 moves.1

However, several more subtle points may be important to consider when making a decision about the most promising 
sequence of moves. Giving check on the last move of a turn often effectively reduces the opponent’s sequence of moves by 
one. A king on the back rank or with only a few accessible squares at its disposal is likely to be at risk. Checks delivered 
by two pieces simultaneously can be especially dangerous, as the only possible response to a double check is a king move. 
Almost from the beginning of the game there is the ever-present risk of pawn promotions. Under-promotions are not 
uncommon, as it is often desirable to avoid premature checks. Interestingly, pawn promotions can often be prevented by 
placing the king so that they will give premature check. However, bringing the king too close to the enemy pieces may be 
dangerous. Putting the king in front of a friendly piece can be disastrous as well: the opponent may be able to put his own 
king further down the same line, and then give a check forcing an immediate discovered check in reply (see Sec. 5, Fig. 6).

The relative value of the pieces may differ significantly compared to ordinary chess, and is also far trickier to determine. 
For example, in the beginning of the game bishops are stronger than knights due to their long range abilities. However, in 
the endings knights are much better than bishops because of their ability to reach any square. Pawns may be of a high value 
when they threaten to reach promotion squares. Once the promotions are stopped, their value usually drops significantly.

2.3. Opening phase

The most common opening moves, as in orthodox chess, are 1.e2-e4 and 1.d2-d4.2 Right from the beginning, Black must 
defend the square f7 and this largely determines the choice of acceptable initial moves. When making a decision about the 
sequence of moves to be executed, the typical dilemma is whether to recover material loss or to fight for an initiative, and 
whether to accept short-term disadvantages for potential long-term gains. Queens are particularly dangerous, so they are 
usually captured and taken off the board quickly. King safety should always be considered, and the king should be given air. 
Castling is almost never a sound option. Bringing the pieces into play may both increase their activity as well as the chance 
of being captured by the enemy pieces. An early advance of one or both wing pawns, bringing them closer to promotion 
squares and creating the way for the rooks to enter into the battle, often deserves attention.

Fig. 2 shows typical opening mistakes. The game went as follows: 1.e2-e4 2.d7-d5 Ng8-f6 3.Ng1-f3 e4xd5 Bf1-b5+
(left-side diagram). If Black responses with four moves by the bishop that win both the opponent’s bishop and the queen 
(4.Bc8-d7 Bd7xb5 Bb5-e2 Be2xd1), White has a checkmate in 5 moves: 5.Nf3-e5 g2-g4 g4-g5 g5-g6 g6xf7# (diagram in the 
middle). However, in the position from the left-side diagram Black has a better sequence at his disposal: 4.c7-c6 Qd8-b6 
Nf6-e4 Qb6xf2#, checkmating the white king. A much better sequence for White would be 3.d2-d4 e4-e5 Bf1-b5+, and Black 
already faces serious problems. Notice that giving check on the last move of a turn severely limits the opponent’s options.

2.4. Endgames

In Progressive chess endgames, we assume that a player’s turns have become long enough to execute sequences of 
arbitrary length. Not many games reach the ending, but those that do are often fascinating [6]. It is important to note that 
White only has odd-length sequences at his disposal, while Black’s sequences are always of even length. As a non-trivial 
consequence, a king and two knights (K+2N) versus the lonely king K are wins for Black but not for White (see the left 
diagram in Fig. 3). As another example, king and queen (K+Q) to play against king is a simple win, while king and rook 

1 The solution of the left-side diagram is given in Fig. 4. The solution to the right-side diagram is 7.Ne1-f3 Nf3-d4 e5-e6 e6-e7 e7xf8R Rf8-h8 Nd4-e6#.
2 We use standard long algebraic notation to describe chess moves. The starting and the ending squares of moves are separated by a hyphen, and captures 

are indicated using “x”. The following letters are used for piece types: K for king, Q for queen, R for rook, B for bishop, and N for knight. The symbols “+” 
and “#” represent check and checkmate, respectively.
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Fig. 2. In the left-side diagram it is 4th move (i.e., Black to move has to make four moves), and the king is in check. Taking the bishop and the queen with 
the bishop is not an option, as White has a checkmate at his disposal (diagram in the middle). However, Black can respond in a better way and delivers 
the checkmate to the white king (the right-side diagram).

Fig. 3. Left: black to play wins, white to play only draws! Right: white to move.

(K+R) versus king is a win only if the defending king is already on the edge. The problem is that the check can only be 
delivered on the last move of the sequence and such a check leaves an undefended rook open to capture.

The right-side diagram in Fig. 3 shows an endgame that is easily winning for White in ordinary chess, while in Progres-
sive chess the position is drawn. The white knight cannot escape the corner, as moving it results in a check to the black 
king and this can be done only at the end of the series of moves. The king cannot help the knight as this would leave the 
pawn undefended. The black king will capture the knight and safely return to the square in front of the white pawn. White 
cannot force Black to leave that square. The reason is that Black’s turn always consists of an even number of moves.

3. The design of the program

The graphical user interface of our Progressive chess playing program is shown in Fig. 4. The application provides the 
several functionalities, including playing against the computer, searching for checkmates, saving games, and watching saved 
games. The user is also allowed to input an arbitrary (but legal) initial position, both for playing (or analyzing) and for dis-
covering sequences of moves that lead to a checkmate. We implemented the Italian Progressive chess rules. The application 
and related material are available online [13].

3.1. Search framework

As indicated in the introduction, one of the greatest challenges for AI in this game is its combinatorial complexity. For 
example, on turn five (White to move has five consecutive moves at his disposal) one can play on average around 107

different series of moves. Games usually end between turns 5 and 8, but may lengthen considerably as the skills of the two 
players increases. Generating and evaluating all possible series for the side to move quickly becomes infeasible as the game 
progresses. Moreover, searching through all possible responses after each series is even less feasible, rendering conventional 
algorithms such as minimax or alpha–beta rather useless for successfully playing this game.

Generally speaking, our program is based on heuristic search. However, the search is mainly focused on sequences of 
moves for the side to move, and to a much lesser extent on considering possible responses by the opponent. In accordance 
with the aforementioned general strategy of the game, searching for the best series of moves consists of three phases:
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Fig. 4. The interface of our progressive chess playing program. Black’s last turn moves are indicated; they represent the solution to the problem in the 
left-side diagram of Fig. 1: 8.Bb4-d6 b6-b5 b5-b4 b4-b3 b3xa2 a2xb1N Nb1-c3 Bd6-f4#.

Searching for checkmate In the first phase, the aim of the search is to discover whether there is a checkmate available. 
If one is found, the relevant series of moves is executed and the rest of the search is skipped. Checkmates occur 
rather often, thus finding them efficiently is crucial for successfully playing this game.

Searching for generally good moves Another search is performed, this time trying to maximally improve the position. Usu-
ally, the aim of this phase is to eliminate the opponent’s most dangerous pieces, and to maximize the survival 
chances of own pieces. For example, giving check on the last move of a turn is considered a good tactic, as it ef-
fectively reduces the opponent’s sequence of moves by one. King safety and pawn promotions are also important 
factors to consider. It is often possible to prevent inconvenient opponent’s moves by placing the king so that they 
will give premature check. It is computationally prohibitive to traverse all possible sequences, so it is important 
that the heuristic values guide the search towards the most promising ones. The search in this phase includes a 
subset of possibilities both for the player to move as well as for the opponent.

Preventing checkmate The previous phase generates a number of sequences and their respective evaluation. It is infeasible 
to perform a search of all possible opponent replies for each sequence. However, it is advisable to verify whether 
we are getting mated in the following turn. The most promising sequence of moves is checked for opposing 
checkmate. In case it is not found, this sequence of moves is then executed. Otherwise the search proceeds with 
the next-best sequence, and the process then repeats until a safe move is found, or the time runs out. In the latter 
case, the best sequence according to the heuristic evaluation is chosen. In this phase, again a quick and reliable 
method for finding checkmates is required.

The main reason for splitting the search into three phases, as opposed to one search that finds good sequences with or 
without checkmate, is that in each phase the heuristics used are fundamentally different and also lead to exploring different 
parts of the search space. A similar split is made by human players when they play the game.

4. Searching for checkmates

Searching for checkmates efficiently is crucial for playing this game and is therefore given a lot of focus in this paper. In 
this section, we explore various attempts to achieve this goal. It can be considered as a single agent search problem, where 
the goal is to find a checkmate in a given position. An alternative problem setting would be to find all checkmates in the 
position, or to conclude that one does not exist, without exploring all possibilities.

The A* algorithm was used for this task. We considered various heuristics for guiding the search. In the experiments, we 
observed the performance of two different versions of the algorithm (see Section 4.1), and of five different heuristics (see 
Section 4.2). Experimental design is described in Section 7.

4.1. The algorithm

The task of finding checkmates in Italian Progressive chess has a particular property — all solutions of a particular 
problem (position) lie at a fixed depth. Check and checkmate can only be delivered on the last move of the player’s turn, so 
any existing checkmate must be at the depth equal to the turn number. A* uses the distance of the node as an additional 
term added to the heuristic evaluation, guiding the search towards shorter paths. In positions with a high turn number 
(where a longer sequence of moves is required) this may not be preferred, as traversing longer variations first is likely to be 
more promising (as they are the only ones with a solution). One possibility to resolve this problem is to remove the distance 
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Fig. 5. The values of heuristics listed in Table 1 for this position are as follows. Manhattan: 13, Covering: 1, Ghost: 7, Squares: 8.

Table 1
Heuristics for guiding the search for checkmates.

Name Description

Baseline Depth-first search without using any heuristic values.
Manhattan The sum of Manhattan distances between pieces and the opponent’s king.
Covering The number of mating squares already covered. Multiple coverings count 

multiple times.
Ghost The minimum number of legal moves pieces require to reach any mating 

square, if they were moving like “ghosts” (ignoring the obstacles).
Squares The sum of the number of moves that are required for each individual 

piece to reach every single mating square.

Table 2
Additional heuristics that can be combined with the existing ones.

Name Description

Promotion How far are pawns to the square of promotion, rewards extra queens.
Pin How far is the king to the square where self-pin could be exploited.

term completely, degrading the algorithm into best-first search. An alternative is to weight the distance term according to 
the known length of the solution. Weight a/length was used for this purpose, where the constant a was set arbitrarily 
for each individual heuristic, and length is the length of the solution. In all versions we acknowledged the symmetry of 
different move orders and treated them accordingly. In the experiments, we used both versions of the algorithm: best-first 
search and weighted A*.

4.2. The heuristics

For the purpose of guiding the search towards checkmate positions, we tried an array of different heuristics with different 
complexities, aiming to find the best trade-off between the speed of evaluation and the reliability of the guidance. This 
corresponds to the well-known search-knowledge tradeoff in game-playing programs [14]. All the heuristics reward maximal 
value to the checkmate positions.

It is particularly important to observe that in such positions, all the squares in the immediate proximity of the opponent’s 
king must be covered, including the king’s square itself (in the future they will be referenced as the mating squares). This 
observation served as the basis for the design of the heuristics. They are listed in Table 1.

Fig. 5 gives the values of each heuristic from Table 1 for the pieces in the diagram. In Manhattan, pawns are not taken 
into account, resulting in the value of 13 (2 + 5 + 6). The value of Covering is 1, as only the b2 square is covered. The 
Covering heuristic is the only one that needs to be maximized, which can be easily remedied by subtracting its value from 
some arbitrary large number. The Ghost heuristic obtains the value of 7 (2 + 1 + 2 + 2): the rook needs two moves to reach 
a square immediately adjacent to the king, the bishop needs one, the knight needs two moves (to reach a1), the pawn 
needs one move to promote and one move with the (new) queen. The value of the Squares heuristic is 8 (2 + 3 + 2 + 1), as 
there are four squares that need to be reached by the black pieces: the square a1 can be reached in two moves with the 
knight, a2 can be reached in three moves with the knight or rook, b1 can be reached in two moves with the rook, b2 can 
be reached in one move with the bishop.

Aside from covering squares around the opponent’s king, there are two more useful heuristics that can be combined 
with the existing ones; we named them Promotion and Pin (see Table 2).

A majority of checkmates that occur later in the game include promoting one of the pawns, getting an extra attacker for 
delivering checkmate. Rewarding promotions of the pawns is therefore beneficial.
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Fig. 6. Left: white to move checkmates in 7 moves. Right: the final position.

Another useful heuristic takes advantage of a “self-pin.” Fig. 6 shows the controversial “Italian mate,” which is enthu-
siastically championed by some but is felt by others to be undesirably artificial [12]. It occurs where the only way to 
escape a check is to give a check in return, making that move illegal. The position from the left diagram is from a game 
Boniface—Archer (played in the year 1993), where White played 7.c2-c4 Ke1-d2 Kd2-c3 Kc3-b4 Ng1-f3 Rh1-d1 Rd1xd7#. 
The final position (diagram on the right) is checkmate according to Italian rules. The solution shows the idea of exploiting 
the self-pin, moving the king to an appropriate square.

Let us briefly note two substantial improvements over our previous work [10] regarding checkmate search. Firstly, the 
Covering heuristic has been changed so that multiple coverings of the same square count multiple times. It turned out that 
this seemingly minor change significantly boosts the performance in some cases. Secondly, remaking the implementation 
using bitboards [15] contributed to a significant speed-up of the search.

5. Heuristic search for progressive chess

Our program first searches for a possible checkmate, as discussed in the previous section, and if one is discovered, the 
program executes the series of moves found. However, if no checkmate can be found, one must deal with the more general 
problem of finding a good series of moves. In this section, we discuss heuristics used for this task and also the choice of an 
appropriate algorithm.

5.1. Position heuristics

In this subsection, we explore the heuristics for evaluating positions. Given the huge amounts of available series, deep 
search is not feasible and we must therefore rely on relatively complex heuristics. Discovering good heuristics is challeng-
ing, as the game is relatively unexplored. Furthermore, a fair bit of what is known to be good in chess does not apply 
to Progressive chess. Defending pieces is an obvious example: while it may be a good idea in orthodox chess, it is often 
completely useless in Progressive chess (multiple sequential moves allow you to take a piece and then retreat away from 
defender’s reach).

We hereby briefly describe the most important heuristics that our program uses for finding sensible sequences of moves. 
Note that these heuristics are used together (by summing their values), instead of using just one as when searching for 
checkmates (see Section 4).

Material count The Shannon value of pieces (Queen = 9, Rook = 5, etc.) hardly applies in Progressive chess. As already 
noted, bishops are better than knights in the early stages. In the ending, however, knights are much better than 
bishops because of their ability to reach any square. Pawns are much more dangerous than in the original game, 
since their promotions often cannot be prevented. Finally, queens are extremely dangerous, because of their huge 
potential for delivering checkmates. Additional experiments are still required to determine a suitable relative value 
of the pieces [16]. In this work, the Shannon values are used.

Pawn promotions Pawns can promote in five moves from their starting position. Stopping them becomes essential as the 
game progresses. It can be done by blockading them with pieces, placing pawns in such formation that opposing 
pawns cannot legally bypass them, or using the king to prevent promotions due to a premature check. The heuristic 
checks for both players the number of pawns that can promote next turn, and distance of the closest pawn to 
promotion. If the opponent does not have promotable pawns, an additional value is added to the position.

King safety Kings tend to be safe in the open air, preferably not at the edge of the board. Given the nature of the game it 
is usually trivial to checkmate a king that is enclosed with its own pieces, so the usual pawn defenses or castling 
are discouraged. Practice showed that a king is safest on the second rank; away from opponent pieces, but still 
safe from back rank mates. King safety can also be increased by placing the bishop in front of the king, since so 
placed bishop can be moved to block any lateral check.
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Table 3
Table of heuristics and their weights.

Heuristic Weights

Queen 9
Rook 5
Knight 3
Bishop 3
Pawn 1
n pawns that can promote n ∗ 0.4
No pawns can promote −6
n squares to nearest promotion −n ∗ 0.4
King on second rank 0.8
n empty squares around the king n ∗ 0.25
Bishop in front of the king 1.5
Pieces on the last 2 ranks 2
n pieces, reachable to opponents bishop −n ∗ 0.2
Check 1
Checkmate ∞

Development Development is a risky proposition, since pieces in the center are more easily captured, and they can often 
be brought into action from their initial positions rather quickly. Nevertheless, pieces with higher mobility and 
pieces deeply in the opponent’s territory (last 2 ranks) are positively rewarded.

Bishop avoidance If an opponent has only one bishop, it is desirable that your pieces stand on squares of opposite color, 
drastically diminishing its value.

Check Giving check to the opponents king in the last move of the series, forces him to spend his first move preventing 
it. Having one effective move less in his turn, might limit his options.

Opening book The opening book “is upgrading” based on results of previous games. The statistics are then used as a part 
of heuristic evaluation.

For completeness, we list in Table 3 our current weights used with the heuristics in the program.
Similar to regular chess, in an endgame the nature of the game changes and end game specific heuristics are used. They 

will be discussed in more detail in Section 6. There we also discuss opening moves used.

5.2. Algorithm

In the checkmate search, only series made in one turn are considered. In this search, however, one must also consider 
opponent replies if one is to achieve high level of play. The presented heuristic implicitly acknowledges options by the 
opponent, for example counting the number of his pawns with the ability to promote. Even so, a deeper search is probably 
required. In classical chess and many similar games, the minimax algorithm would be used to search the position few turns 
deep and return the best continuation. However, in this domain its use is infeasible, since we can hardly ever compute all 
possible series in a single turn, much less all possible replies to each of them (and similarly at greater depths).

Another popular alternative are Monte-Carlo algorithms [17], but in our practice they performed extremely poorly on 
this domain. It may be the fact that the game is extremely volatile, and often only one series wins, and most others lose, 
giving the random runs the algorithm a hard time to find the winning line. Additional experiments should be performed, 
however, before the algorithm is discarded completely.

Our approach was combining the A* search algorithm with minimax backward propagation. A* search is used to find 
promising series according to the listed heuristics. Then on each resulting position, the A* algorithm is run again for the 
next player. This can be repeated to any desirable depth, then the evaluation of the leaf nodes are back propagated according 
to the Min–Max principle. This procedure can be viewed as the minimax algorithm that instead of expanding all the possible 
nodes in one turn, expands only the most promising ones, and then greedily continues to explore only one of them.

The pseudocode is listed in Algorithm 1.

Algorithm 1 Minimax + A*(node, depth).
1: if depth = 0 then
2: return heuristic value of node
3: end if
4: bestValue ← −∞
5: bestChilds ← best series of moves found in some time limit by the A* algorithm
6: for child : bestChilds do
7: value ← -negamax(child,depth-1)
8: bestValue ← max(bestValue, value)
9: end for

10: return bestValue
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Table 4
Opening book for the first two turns.

1.e2-e4 2.e7-e5 f7-f6
1.e2-e4 2.d7-d5 Nb8-c6
1.e2-e4 2.d7-d5 d5xe4
1.e2-e4 2.e7-e5 Ng8-h6
1.d2-d4 2.d7-d5 c7-c6
1.d2-d4 2.d7-d5 h7-h5
1.d2-d4 2.d7-d5 Nb8-c6
1.d2-d4 2.c7-c5 c5xd4

This greedy approach could cause the algorithm to miss some relevant lines of play, but in practice it worked better than 
all tried alternatives. Different search depths were tested (see the results in Section 8).

6. Optimizing opening and endgame play

When playing regular chess openings or endings, one can use the knowledge specialized for that particular part of the 
game. The same approach was used in our Progressive chess program. In this section we present deviations from the normal 
play and reasons for them.

6.1. Openings

Most of chess-playing programs use a so called opening book [18]. That is a tree of the first few possible moves that 
have through accumulated experience of many games proven to be good. Instead of calculating best first moves every time, 
one of the saved moves is used. We used the same concept and saved good series of moves that one can play in the first 
two turns of the game (see Table 4). In every game, the computer player (semi)randomly chooses and plays one of them. 
The random choice (that nevertheless takes into account the statistics recorded in the tree) increases the variance of the 
games. Such an opening book can be easily extended and branched to any number of turns included into the tree.

Opening series were taken from an online tutorial [19], and are listed below. The openings and some alternatives were 
tested in the experiments presented in Sections 7 and 8.

From turn 2 on, the program hashes all reached positions and updates the game result in the corresponding nodes. 
So acquired statistics are then used to modify the heuristic evaluation of that position the next time it is reached. This 
approach creates even more varied games, as poorly performing openings tend to get avoided.

6.2. Endings

Similar to regular chess, the nature of the game changes in the endgame. With only a few pieces on the board, a danger 
of sudden checkmates diminishes, the power of the king increases, and stopping pawn promotions becomes one’s first pri-
ority. Additionally, when the opponent is reduced to the king only, one must (just like in regular chess) push the opponent 
king to the edge of the board and deliver a checkmate. Doing so with some combinations of pieces (for example: two 
knights) requires a special pattern of moves that is not trivial to see, even for experienced players.

Using additional heuristics listed below with the regular ones in the second phase of the search, solves all the problems 
listed above.

Defence Calculates which squares are reachable by the opponent king, and which of them are undefended. Each reach-
able, but undefended position negatively impacts the position score. This heuristic implicitly rewards cutting the 
opponent king from the relevant side of the board.

Closeness to the edge This heuristic checks how close to the edge of the board will the opponent king be in the worst 
case, despite striving to get away from it. The closer to the edge the king is trapped, the higher is the heuristic 
value. It turns out that using this heuristic in conjunction with the checkmate search in the previous phase, the 
computer player is able to effectively find a checkmate with various combinations of pieces. No additional stored 
patterns are required for this task. Interestingly, the mates with two knights and a knight and a bishop can only be 
forced by the black player; as discussed earlier, this is the consequence of the fact that White always has an odd 
number of moves in a series, while Black’s move number is always even. Thus only Black can force White to move 
to another square when only two squares are available to the opponent king, and this makes all the difference.

Closeness to the center Conversely, a small reward is given to the king for standing nearer to the center, which makes the 
king safer.

Stalemate The position is checked for a stalemate and ranked accordingly.
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7. Experimental design

The goal of the experiments was to verify empirically how promising our approaches are for playing Progressive chess. 
The first point of interest was its ability to find checkmates in an efficient manner. In particular: (1) which of the two search 
algorithms performs better (best-first search or weighted A*), (2) which is the most promising heuristic to guide the search 
(Manhattan, Ghost, Covering, or Squares), and (3) what is the contribution of the two additional two heuristics (Promotion
and Pin; see Table 2).

Secondly, we wanted to evaluate heuristics proposed in Section 5 and experiment with different settings of our algorithm 
proposed in that section. Moreover, beside finding good configurations of individual program components, we also wanted 
to test the program’s overall ability to play the game.

Another research question is who the advantage has in Progressive chess: White or Black (note that this is not so clear 
as in orthodox chess). The Classified Encyclopedia of Chess Variants claims that masters have disagreed on this question, but 
practice would indicate that White has a definite edge [2].

7.1. Experiments

Several sets of experiments were conducted. Firstly, we observed how quickly different versions of the program did 
find checkmates on a chosen data set of positions with different solution lengths (see Section 7.2). Both average times and 
success rates within various time constraints were measured. The search was limited to 60 seconds per position (for each 
version of the program).

Secondly, self-play experiments were performed with the programs with the same algorithm (weighted A* with the two 
additional heuristics) and various heuristics. The programs played each other in a round-robin fashion. The winning rates 
were observed for each version of the program. In the second phase of the game (see Section 3.1), a small random factor 
influenced the search so the games could be as diverse as possible. Four different, increasingly longer time settings were 
used in order to verify whether different time constrains affect the performance.

We wanted to test the ability of computers to find checkmates in comparison to the human ability in the same task. 
To do so, we looked at the tournament games from the PRBASE (see Section 7.3), and assumed they were played by good 
Progressive chess players. We observed how many times human players missed a checkmate that the computer found, and 
vice versa.

In the fourth experiment we tested different depths of search (Section 5), using the described combination of A* and the 
minimax algorithm. Even with the greedy nature of such combination, it is unreasonable to expect very deep search, since 
the A* search at every node is rather costly. Similarly to the second experiment, self-play experiments were performed: 
different versions of the program were playing at different search depths. We tested depths 0, 1 and 2, where 0 means 
that only the current turn is searched, without taking into account the opponent’s replies (except the usual checkmate 
prevention). The experiment was repeated at different time settings to observe whether greater search depths benefit from 
longer available times.

Next, we tested the contribution of the two additional heuristics in the second phase: Pawn promotion and King defense. 
Again, self-play experiments were executed with four different versions of the program: one had the full set of heuristics, 
one was missing Pawn promotion, one was missing King defense, and the last one was missing both. The positive contribution 
of the Material count heuristic was obvious and was not explicitly tested.

In order to test the efficiency of our opening series (see Section 6), we conducted self-play experiments where each 
version of the program always picked its own opening. In addition to the opening series in the opening tree of the program, 
some additional series of opening moves were considered.

Lastly, the computer played a series of games against a chess FIDE master that also had substantial experience with 
Progressive chess. The goal was to determine the quality of the computer player as a whole. In the future we hope to 
increase the sample size of this experiment by entering a Progressive chess competition with our program.

7.2. The checkmates data set

We collected 900 checkmates from real simulated games between the programs. In each turn in the range from 4 
to 12, there were 100 different checkmates included. The shortest checkmates in Progressive chess can be given on turn 3, 
however, they are few and rather trivial. Longer games are rare, and even then there are usually very few pieces left on the 
board, making the checkmate either trivial or impossible. The above distribution allowed us to observe how the length of 
the solution affects the search performance.

7.3. PRBASE data set

PRBASE [20] is a Progressive chess database, that is advertised as containing a few thousand games. The version of 
PRBASE that we managed to find, however, contained 654 games in total. Out of those games, 332 ended or should have 
ended in a checkmate (as opposed to a draw or more often, resignation). All the games were already annotated by the 
Progressive chess expert Deumo Polacco, and he also marked checkmates missed by the players. Checkmates in these games 
were slightly more difficult to find by the program, which implies a relatively high quality of the games in PRBASE.
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Fig. 7. Average times (in milliseconds) with the improved A* search algorithm. The horizontal axis represents the length of the solution.

Fig. 8. Average times (in milliseconds) with the best-first search algorithm. The horizontal axis represents the length of the solution.

8. Results

In this section, we discuss the results of the experiments.

8.1. Average times for finding checkmates

First we show that combining the base heuristics with the two additional ones (Promotion and Pin) greatly improves 
the performance. In Fig. 7, we show average times for finding checkmates using the Covering heuristic and the improved 
A* search. The same pattern can be observed in all other combinations. We see that the Promotion heuristic dramatically 
shortens the average search time for checkmates in turns 7–9. That can be easily explained, since on those turns most of 
the promotions occur. The Pin heuristic gives slight improvements on basically all turns. These improvements are slight, 
as Italian mates do not occur often. The two additional heuristics were from now on included in all the experiments that 
followed.

Fig. 8 gives the average times for finding checkmates with the best-first search algorithm. It roughly outlines the difficulty 
of the task: finding checkmates is easier when the solution is short (turns 4–6), more difficult when the solutions are of 
medium length (turns 7–10), and easier again in the later stage (turns 11–12), as the material on the board diminishes. The 
Covering heuristic performed best at most solution lengths.

The average times with the improved A* algorithm are given in Fig. 9. For some heuristics, the average time increased 
greatly at the later stages. The main reason is that the heuristics occasionally fail to find the solutions in later stages (note 
that each failed attempt is “penalized” with 60,000 milliseconds, i.e., the time limit for each problem). The exception is 
the Covering heuristic, which outperformed others at all stages and turned out to be by far the most promising of all tried 
combinations.
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Fig. 9. Average times (in milliseconds) with the improved A* algorithm. The horizontal axis represents the length of the solution.

Fig. 10. Percentage of checkmates found in less than 1,2, . . . ,12 seconds.

8.2. Finding checkmates

Fig. 10 demonstrates how many checkmates were found at any given point of time (in seconds). The Covering heuristic 
performed clearly best at every cutoff point. It found 98% of the checkmates in less than a second, and all of them within 
the time limit of 60 seconds. The improved A* algorithm (using the two additional heuristics) was used in the rest of the 
experiments.

Using the Covering heuristics and the improved A* algorithm we performed a test on the PRBASE database. On each 
position of each game, the computer was given 10 seconds to find a checkmate. Notice that the 10 seconds limit is probably 
much less time than the players and the annotator had spent on any given turn (tournaments are, to the best of our 
knowledge, usually played with the 15 minute per game limit). The program found 69 checkmates that were missed by 
the players, while it only missed 9 checkmates found by the players. This result indicates that even with such constrained 
time settings, the computer player at finding checkmates outperforms a typical player in the PRBASE database. Some of the 
checkmates found were also missed by the annotator.

8.3. Contribution to the overall game skill

The results of the self-play experiments using the programs with different checkmate heuristics are given in Fig. 11, 
showing the percentage of wins for each heuristic. The number of games for each time setting is listed in Table 5. The 
Covering heuristic clearly outperformed all the other heuristics, showing that the ability to find checkmates is strongly 
linked to the overall ability to play the game well.

8.4. Search depth

The results of the self-play experiments using the programs searching to different search depths are given in Fig. 12. The 
percentage of wins are shown for each heuristic. The number of games is given in Table 6. Regardless of the time given, 
search with depth 1 performed best. Such a search devotes all its time calculating sequences of moves in the current turn 
and some of the opponent’s possible replies. This strategy turned out to be more effective than investigating deeper at the 
cost of less search in the earlier turns.
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Fig. 11. Contribution to the overall game skill: the success rate for each program in different time settings.

Table 5
The number of games for each time setting.

5 sec 15 sec 30 sec

600 400 200

Fig. 12. Search depth: the success rate for each program in different time settings.

Table 6
The number of games for each time setting.

15 sec 30 sec 60 sec

300 250 200

8.5. Evaluating additional heuristic knowledge

Fig. 13 shows the results of the self-play experiments between the programs that had some of the heuristics removed. 
The experiment was performed on both search depths 0 and 1 (300 games per run). It is clearly visible that additional 
knowledge contributed to higher winning rates. The difference got smaller with a greater search depth, since in that case 
the algorithm is less heuristic dependent.

8.6. Evaluating openings

Table 7 shows the results of the self-play experiments between the programs that used different opening series. The last 
four options in the table do not use a recommended first move for white, and White’s winning rate clearly decreases. Other 
opening choices appear relatively well balanced and give similar winning possibilities for both players. Nevertheless, the 
obtained ratios should be interpreted with care, in particular since Progressive chess openings are extremely volatile: there 
are well-known cases when a single improvement brought a sudden, radical change in the evaluation of entire variations.
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Fig. 13. Evaluating additional heuristic knowledge: the success rate for each program in different time settings.

Table 7
White win percentage at listed openings.

1.e2-e4 2.d7-d5 Nb8-c6 43%
1.e2-e4 2.d7-d5 d5xe4 50%
1.d2-d4 2.d7-d5 c7-c6 50%
1.d2-d4 2.d7-d5 h7-h5 44%
1.d2-d4 2.d7-d5 Nb8-c6 39%
1.d2-d4 2.c7-c5 c5xd4 64%
1.d2-d3 2.d7-d5 Ng8-f6 27%
1.e2-e3 2.e7-e5 Ng8-h6 20%
1.f2-f3 2.d7-d5 c7-c5 25%
1.h2-h4 2.e7-e5 e5-e4 29%

Fig. 14. Left: white to move wins, 9 moves left. Right: the final position, the program’s moves are indicated. Black is lost, as his king cannot cross the 
barrier created by white pieces (the squares marked with the red color), and all pawn promotions are prevented.

8.7. Games against the human opponent

The final version of the program was matched against a chess FIDE master with substantial Progressive chess experience. 
Two matches were played: with the time limit of 10 minutes per game the computer won 6–0, while with the time limit of 
15 minutes per game the result was 3.5–2.5 (the computer won). With such a limited number of games (moreover, against 
a single opponent) the experiment may not be of much scientific value, however, it was interesting to see that our computer 
program can win several games against a rather strong human opponent.

Fig. 14 demonstrates an instructive sequence of moves executed by the program in one of the games in the matches 
against the human FIDE master. In the diagram on the left, White has to make 9 moves. The most important tasks for 
him are (1) to capture the black queen, (2) to prevent black pawns from promoting, and (3) to capture the black knight. 
The diagram on the right shows the triumph of the program’s strategy: not only that all the aforementioned goals were 
achieved, White also succeeded in preventing the black king to enter his camp by creating a barrier that the king is not 
allowed to cross. Black can do nothing to prevent losing all the material and/or getting mated. The human player thus 
resigned the game.
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9. Conclusions

The aim of our research is to build a strong computer program for playing and learning Progressive chess. This chess 
variant was particularly popular among Italian players in the last two decades of the previous century [2]. By developing a 
strong computer program, we hope to revive the interest in this game both among human players, who may obtain a strong 
playing partner and an analysis tool, as well as among computer scientists. In particular, the extremely large branching 
factor due to the combinatorial explosion of possibilities produced by having several moves per turn makes Progressive 
chess both an interesting game and a very challenging environment for testing new algorithms and ideas.

We designed and implemented a Progressive chess program that follows the generally recommended strategy for this 
game, which consists of three phases: (1) looking for possibilities to checkmate the opponent, (2) playing sequences of 
generally good moves when checkmate is not available, and (3) preventing checkmates from the opponent. In order to 
adopt this recommended strategy, we developed two different sets of heuristics and search algorithms: one for checkmate 
search, and one for finding promising sequences of moves. Moreover, a set of specialized heuristics was crafted for the 
endgame phase, and an opening book was created in order to improve the opening play. The program and related material 
are available online [13].

For checkmate search, which is a very important task in Progressive chess, we slightly adapted the well-known A* 
algorithm, and introduced five heuristics for guiding the search. In particular, the Covering heuristic proved to be both 
efficient and effective when searching for checkmates. This heuristic gives an estimate how well the squares around the 
opponent’s king are covered. In the experiments with 900 checkmate-in-N-moves problems, the program with the Covering
heuristic found solutions in 98% of the cases within the first second, and all within one minute of search on regular 
hardware.

We adopted the Italian Progressive chess rules, where a check may only be given on the last move of a complete series of 
moves. The length of the solution (whether it is a checkmate or merely a promising sequence of moves) is therefore known 
in advance. As it was demonstrated experimentally, it was therefore beneficial to slightly adapt the A* algorithm. Concretely, 
the distance term of the A* algorithm was weighted with respect to the solution length.

The combination of the weighted A* algorithm and minimax search yielded best results for finding generally promising 
moves. Several heuristics were crafted for this purpose, including the following: material count, pawn promotions, king 
safety, and development. Interestingly, the minimax search performed best when searching to level 1, that is taking into 
account the player’s current turn (a sequence of moves) as well as the opponent’s replies (also a sequence of moves). While 
searching deeper in game-playing programs relying on the minimax principle should in general yield better results [21], this 
finding shows that the combinatorial explosion of possibilities produced by having several moves per turn makes it very 
difficult to cover all relevant parts of the search space.

In two mini matches against a rather strong human opponent — a chess FIDE master with substantial Progressive chess 
experience — the program not only won, but also demonstrated instructive play on several occasions. In this sense, by 
enabling a computer analysis for an arbitrary Progressive chess position, the program may represent a valuable teaching 
tool for an interested player.

Our program still requires further work to achieve (and possibly surpass) the level of the best human players. Firstly, 
the program would benefit from further improving the speed of finding checkmates. Beside trying to improve the Covering
heuristic (or any other one), alternative approaches could be tried, such as nested Monte-Carlo tree search [22]. Particularly 
in the second phase of the game (which is not directly associated with searching for checkmates) we see a lot of room for 
improvements. One possibility to alleviate the problem of the combinatorial explosion of possibilities could be an inclusion 
of Monte-Carlo tree search techniques [23,24]. The question who has the advantage in Progressive chess is still open and 
could be the subject of further investigation.
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