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Abstract—In this paper, we investigate experimentally the
efficacy of semi-automatically constructed instructions for
solving problems that require search. The instructions give
advice to the student, in terms of what sub-goals should be
attempted next in the process of solving a problem. Our
chosen experimental problem domain was the chess endgame
of checkmating with bishop and knight, which occasionally
presents difficulties even to chess grandmasters. Our subjects,
little more than complete beginners, were given the task of
learning to win this endgame by studying the instructions. We
were interested in two questions: (1) How effective were the
goal-oriented instructions as an aid to the student towards
mastering this domain? (2) What was the form of the students’
“internal representation” of the acquired knowledge? The
latter question was studied by our method for automatically
identifying so-called procedural chunks from the students’
games. Given the simplicity of the chunk detection method, the
reconstructed chunks of students’ acquired knowledge reflected
the goal structure of the instructions amazingly well.

Keywords-cognitive models; procedural knowledge; procedural
chunks; problem solving; perception; memory; chess.

I. INTRODUCTION

People operate under constant attacks from lots of external
information. If we want to react properly and orient in the
world that surrounds us, we need to use this information
selectively and effectively. In doing so, we need to incor-
porate knowledge, stored in long-term memory, which we
can recall to short-term memory when needed. Information
is usually stored in the memory in the form of chunks -
completed units of logically related information clusters that
facilitate their retrieval and use, and allow better utilization
of a limited working-memory capacity ([1], [2]). Most of
the previous research efforts have been devoted to chunks
in declarative knowledge, while little is known about the
chunks in procedural knowledge. The nature of chunks
still remains very elusive, especially with understanding
chunks in procedural knowledge. Our attempt is to show the
existence of chunks in procedural knowledge, define them,
and see how they are incorporated in ones memory.

In this paper, we intend to verify the following claim:
people learn procedural knowledge by (sub-consciously)
constructing meaningful units of procedural knowledge. To

emphasize the difference with respect to well-known chunks
in declarative knowledge, we will refer to these meaningful
units of procedural knowledge as procedural chunks. In
chess, for example, a procedural chunk is a sequence of
chess moves that all together belong to a chess concept,
and are therefore memorized by a player as a whole. We
also intend to demonstrate that compared to the traditional
approach that usually provides declarative knowledge, using
the approach that emphasizes developing students’ procedu-
ral knowledge can greatly improve their skills.

In our previous study [3], we indicated the existence of
procedural chunks by using reconstruction of chess games.
In the experiments presented in this paper, however, the
participating students – chess beginners – were actually
playing chess against a computer. The identification of
chunks was performed by combining existing methods for
chunk recognition, slightly adapted for detection of chunks
in procedural knowledge. The times spent for execution of
individual moves played by the students served as the most
valuable information for determining chunks, similarly as in
several studies related to chunks in declarative knowledge
(see, for example: [4], [5], [6], and [7]).

As a case study, we considered teaching students how
to play a difficult KBNK (king, bishop, and knight vs.
king) chess endgame, by providing the students with goal-
oriented procedural knowledge in the form of a manual
(textbook instructions) supported with example games. We
have chosen chess for our research domain due to the
following reasons:

• because of its complexity, clearly defined rules, built-
in scales for measuring chess players’ knowledge (Elo
rating system), and generalization to other areas often
made possible;

• chess endgames with a few pieces have an additional
benefit as an experimental domain: availability of per-
fect information in the form of chess tablebases [8],
enabling optimal play by a computer and – more impor-
tantly – easier tracking of students’ learning progress.

The paper is organized as follows. In Section II, we
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Table I
THE 11 GOALS PRESENTED IN THE TEXTBOOK INSTRUCTIONS.

1 Deliver checkmate.
2 Prepare the knight for checkmate.
3 Restrain black to a minimal area beside the right corner.
4 Build a barrier and squeeze black king’s area.
5 Approach black from the center.
6 Block the way to the wrong corner.
7 Push black towards the right corner.
8 Push black towards the edge.
9 Approach with the king.

10 Bring the knight closer.
11 Keep the kings close.

describe in more detail the domain of KBNK, the teaching
materials used in the experiments, and the experimental
procedure. Section III introduces the methods used for
identification of procedural chunks. Section IV presents the
results of our experiments, particularly in terms of students’
learning progress during the playout games and procedural
chunks identified. We conclude the paper and point out
directions for further work in Section V.

II. EXPERIMENTAL SETUP

A. Domain Description

Our domain of choice was the KBNK (king, bishop, and
knight vs. a lone king) chess endgame, which is regarded
as the most difficult of the elementary chess endgames. The
stronger side can always checkmate the opponent, but even
optimal play may take as many as 33 moves. Several chess
books give the general strategy for playing this endgame as
follows. Since checkmate can only be forced in the corner of
the same color as the squares on which the bishop moves, the
opponent will try to stay first in the center of the board, and
then retreat in the wrong-colored corner. The checkmating
process can be divided into three phases: (1) driving the
opposing king to the edge of the board, (2) forcing the
king to the appropriate corner, and (3) delivering checkmate.
However, only knowing this basic strategy hardly suffices
for anyone to checkmate the opponent effectively. There
are many recorded cases when strong players, including
grandmasters, failed to win this endgame.

B. Textbook Instructions and Example Games

In our experiments, we used “textbook instructions” in
the form of goals for delivering checkmate from any given
KBNK position. These instructions were semi-automatically
derived using an interactive procedure between a chess
teacher (a FIDE master of chess) and the computer [9],
using argument-based machine learning (ABML) approach
combined with an algorithm for semi-automated domain
conceptualization of procedural knowledge [10].

The textbook instructions consist of 11 goals listed in
Table I (see [11] for details). The chess-player is instructed
to always try to execute the highest achievable goal. The
goals are listed in order of preference, goal 1 being the
most preferred. In the textbook instructions presented to
the students, these goals were supplemented with detailed
explanations and illustrative diagrams.

The students also had example games demonstrating the
checkmating procedures at their disposal. The example
games were supplemented with the goals given as instruc-
tions, in terms of which is the preferable (and also achiev-
able) goal in a particular position. An instruction is given
each time the previous suggested goal was accomplished.

Figure 1 is taken from the textbook instructions. It demon-
strates the execution of one of the goals. This goal is
supplemented by the following explanation in the textbook
instructions: “When the defender’s king is already pushed
to the edge of the board, the attacker’s task is to constrain
as much as possible the defending king’s way to the wrong-
colored corner. At the same time, the attacker should keep
restraining the enemy king to the edge of the board.”

Both the textbook instructions and the example games
that were used in our experiments are available in a web
appendix at [11].

C. Experimental Procedure

Three students – chess beginners of slightly different
levels – were involved in the experiment. Student 1 is a
Class B player, Student 2 is a Class C player (i.e., slightly
weaker than Student 1 in terms of his chess strength), and
Student 3 is a Class D player (a complete beginner, however,
well familiar with the rules of chess). According to the ELO
rating scales, the Class B, Class C, and Class D represent
ELO rating ranges of 1600-1800, 1400-1600, and 1200-
1400, respectively [12].

Our assumption was that none of the three students
possessed procedural knowledge sufficient for successfully
delivering checkmate in the KBNK endgame at the begin-
ning of the experiment. In order to verify the correctness of
this assumption, the participants were first asked to try to
deliver checkmate in three games against the computer. The
computer was defending “optimally”, i.e., always randomly
choosing among moves with the longest distance to mate
(using chess tablebases). The time limit was 10 minutes
per game. Each game started from a different starting
position: mate-in-30-moves or more assuming optimal play.
The moves and times spent for each move were recorded
automatically using Fritz 13 chess software by Chessbase.

None of the students were able to deliver checkmate at
this first stage of the experiment. While the students were
occasionally able to force the defending king towards the
edge of the board, it turned out that the most difficult part
was to block the way to the wrong corner and push the
king towards the right corner – the corner where checkmate
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Figure 1. Demonstration of the execution of the goal 6: “Block the way to the wrong corner.” In the position on the left, white pieces lure the defending
king out of the wrong corner (note that a light squared bishop cannot deliver mate in a dark square corner): 1.Ne5-f7+ Kh8-g8 2.Bf5-g6 Kg8-f8 (this is
the only available square to the black king, since h8 is attacked by the knight) 3.Bg6-h7! The last move in this sequence takes under control square g8,
and sets up the blockade one square farther from the wrong corner.

can be delivered. They had no idea how to establish the
appropriate barrier around the right corner in order to deny
the defending king an escape from there.

Then the students were given the textbook instructions
and access to the example games that contain instructions
as commentary to particular move sequences. The students
were reading the instructions and observing the example
games until they felt they are ready to challenge the com-
puter once again. None of them spent more than 30 minutes
for reading the instructions and observing the example
games at this point.

In the second stage of the experiment, the students were
again trying to checkmate the optimally defending computer.
The time limit per game was again set to 10 minutes. The
starting position of each game was chosen randomly in such
way that each of the four pieces occupied one corner square,
with the white bishop always being placed on a white square.
Similarly as in the first stage, the moves and times spent
for each move were recorded automatically. The textbook
instructions and example games were not accessible to the
students at this stage. If a game ended in a draw, the student
was again granted the access to the textbook instructions
and example games for up to ten minutes before starting
a new game. This procedure was then being repeated until
the first win was recorded. In order to verify the quality of
the learned knowledge, the students were asked to challenge
the computer again, this time with the white bishop being
placed on a black square (i.e., the opposite square than in
their all earlier games).

Since it is our conjecture that people learn procedural
knowledge by using procedural chunks, we attempted to
verify whether the students learned any procedural chunks
during the process of learning how to deliver checkmate in
the difficult KBNK chess endgame. Thus, we needed some
methods to identify procedural chunks. These methods are
presented in the following section.

III. IDENTIFICATION OF PROCEDURAL CHUNKS

The chunks were identified on the basis of a hypothesis
stated by Chase and Simon [4], which states that longer
time interval during the reconstruction of a meaningful unit
of material (i.e., the material about which we have some rel-
evant knowledge) reveals the recall of a new structure/chunk
from the long-term memory. In our experiments, the students
did not deal with reconstructions of chess positions (as in
Chase and Simon [4], and Bratko et al. [5]) or particular
move sequences (as in Krivec et al. [3]), but were actually
playing against the computer.

The relative time of particular person was considered
instead of an absolute 2-second limit used by Chase and
Simon. We defined a longer time interval in the following
way. Times of each participant were normalized using two
different methods: (1) we calculated the percentage of time
used for a certain move with regard to the time spent for a
whole game, and (2) by converting them into z values. The
quantity z represents the distance between the raw score and
the population mean in units of the standard deviation. The
value of z is negative when the raw score is below the mean,
and positive when above.

All relevant symmetries were taken into account when
processing individual moves in the identification of proce-
dural chunks. For example, the move Bh7 (the bishop moves
to h7) in the sequence 1.Nf7+ Kg8 2.Bg6 Kf8 3.Bh7 (see
Fig. 1) is equivalent to the move Ba2 (the bishop moves to
a2) when the enemy king is in the opposite “wrong” corner
of the board and thus the sequence is actually 1.Nc2+ Kb1
2.Bb3 Kc1 3.Ba2.

For all moves in each game, an average value and standard
deviation of normalized time medians was calculated. All
the moves that exceeded the boundary of the average value
plus one standard deviation were considered as a “long time
interval” and as such candidates for the beginning of a
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new procedural chunk. If such a candidate appeared in the
majority of the games, it was considered as the beginning
of a procedural chunk.

Validity of this method of chunk identification was statisti-
cally verified as follows. We randomly generated input data,
having the same number of chunks as in the original data.
After this, we calculated the co-occurrence of the chunks
beginning. We repeated this 100 times. Then we calculated
95-percentile of the sum of co-occurred chunk beginning.
We compared the possibility that the original results (i.e.,
the beginning of the chunks) are the result of a chance. That
is, if the co-occurrences of the beginning of the chunks in
the results of the real play represented more than 95% co-
occurrences in randomly generated results, it was considered
that it is highly improbable that the co-occurrences happened
by chance only.

IV. RESULTS

A. Deviation from Optimal Play

In order to track the progress by the students as they were
more and more exposed to the textbook instructions and
example games between (but not during) their trial games
against the computer, we observed the deviations of the
moves they played from an optimal play. Chess tablebases
served us for this purpose, providing the number of moves
required to deliver checkmate from any given position
assuming optimal play by both players. Although the goal
of the conceptualized procedural knowledge included in
the textbook instructions is not to teach students how to
play “optimally,” but merely to enable them to achieve a
step-by-step progress towards the ultimate goal – delivering
checkmate – deviation from optimal play was chosen as a
sensible measure of quality of their play.

Figure 2. The average students’ deviations from optimal play in the games
of both stages of the experiment, i.e., before and after they were first given
access to the textbook instructions and the example games.

The results of these observations are presented in Figure
2. They demonstrate the average students’ deviations from

optimal play in all their games until they successfully check-
mated the optimally-defending computer for the first time
(this game is included in the graph). The lower deviation
from optimal play means a better performance of the player.

The deviations from optimal play for a particular move
played by the player were calculated as follows:

DTMdev = DTMplayed −DTMoptimal (1)

where “DTM” represents the distance to mate in moves
(rather than plies or half-moves). DTMoptimal is the value
of DTM of an optimal move, and DTMplayed is the value
of DTM of the move played by the student. DTMdev

(deviation from optimal play) value of 0 therefore means
that the student played a given move optimally, the value of
1 means that the distance to mate remained the same after
the execution of the moves by the player and (optimally
defending) computer, and DTMdev values higher than 1 for
a given move mean that on the next player’s move DTM
even increased.

The results clearly suggest that the speed of achieving
mastery of this difficult chess endgame is correlated with the
chess-playing strength. Student 1, the strongest of the three
players, not only successfully checkmated the opponent
already in the second game after having studied the teaching
materials – he also made less inferior moves earlier than the
other two students. The other two students checkmated in
games 5 and 6, respectively. Once they achieved the win the
students had no problems at all achieving it again, even with
the white bishop being placed on the opposite square color
than in all previous games. The results also demonstrate a
vast progress of all three students after they got acquainted
with (sub)goals and procedures presented in the teaching
materials.

It is particularly interesting that the second student played
optimally(!) in his third game of the second stage of the
experiment. He actually played 22 optimal moves in a row
– an achievement that a chess grandmaster could be proud
of. Moreover, it happened in less than an hour after he was
first given access to the textbook instructions and example
games. This result would be very hard or even impossible to
achieve without an effective way of memorizing particular
(sub)goals or concepts of procedural knowledge required in
order to master this difficult endgame.

B. Procedural Chunks Identified

We identified procedural chunks separately for each of the
three phases mentioned in II-A (repeated here for clarity):

Phase I:
Driving the opposing king to the edge of the board
(the black king aims towards the “wrong” corner).

Phase II:
Forcing the king from the “wrong” corner to the
“right” corner (where checkmate can be delivered).
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Phase III:
Delivering checkmate (once a “barrier” is set up).

The students actually tended to spend more time on moves
that indicate a borderline between two phases. Based on
this observation, we determined the start of Phase II just
before a waiting move with the bishop before blocking
the way of the black king to the wrong corner (see the
move 2.Bf5-g6 in Figure 1), and the start of Phase III just
after the barrier is established. Tables II, III, and IV show
identified procedural chunks in the games of the second
stage of the experiment, i.e., after the teaching materials
were presented to the students, and frequencies of their
occurrence in the playouts. The chunks are described by
meaningful descriptions.

Table II
PROCEDURAL CHUNKS DETECTED IN PHASE I.

# Chunk Description Freq.

1 Finding the path for the knight to attack the corner square. 14
2 Bringing the bishop into the game. 9
3 Bringing the knight into the game. 8
4 Using the king to push the enemy king towards the edge. 6

Let us take a look how the chunks identified in Phase
1 (Table II) are associated with the goals (see Table I)
given in the textbook instructions. Chunk #1 represents
preparation for execution of Goal 6 (“Block the way to
the wrong corner.”). To achieve this goal, White must first
bring the knight to the square from which it attacks the
wrong corner square (see Figure 1). While it may take a
fraction of a second for a master to spot the path with the
knight to a given square, the chess beginners involved in our
experiments typically paused for a while before executing
a sequence of moves that brought the knight to a desired
square. Chunks #2 and #4 can be associated with Goal
8 (“Push black towards the edge.”), and the latter is also
associated with Goal 5 (“Approach black from the center.”),
Goal 9 (“Approach with the king.”) and Goal 11 (“Keep the
kings close.”). Chunk #3 is associated with Goal 10 (“Bring
the knight closer.”).

Table III
PROCEDURAL CHUNKS DETECTED IN PHASE II.

# Chunk Freq.

1 A waiting move with the bishop before blocking the way. 7
2 The knight keeps the enemy king on the edge. 7
3 Building a barrier with the knight and the bishop. 6
4 The king keeps the enemy king on the edge. 5

In Phase II (Table III), Chunk #1 represents a part of an
execution of Goal 6 (“Block the way to the wrong corner.” –
see Figure 1). Chunks #2 and #4 are associated with Goal 7
(“Push black towards the right corner.”) in which White also

needs to keep the enemy king at the edge of the chessboard
– note that two chunks were learned for an execution of a
single goal, which incidentally also turned out to be the most
difficult of the goals to be learned (judging from the times
spent for its execution). Chunk #3 represents an execution
of Goal 4 (“Build a barrier and squeeze black king’s area.”).

Note that Phase II is the most difficult part of the
KBNK endgame, since a precise sequence of moves must be
executed and a single mistake may have a fatal consequence:
the black king may escape to the opposite wrong corner
before the barrier is established. The students learned this
sequence of moves by remembering meaningful intermediate
subgoals, as suggested by the identified procedural chunks.

Table IV
PROCEDURAL CHUNKS DETECTED IN PHASE III.

# Chunk Freq.

1 Squeezing the enemy king into the right corner (start). 8
2 Manoeuvring the bishop to set up the “minimal area”. 7
3 Squeezing the enemy king into the right corner (continue). 6
4 Calculating the checkmate procedure. 6
5 Approaching with the knight for delivering checkmate. 5

In Phase III, Chunks #1 and #3 are associated with Goal 4
(“Build a barrier and squeeze black king’s area.”), Chunk #2
closely resembles Goal 3 (“Restrain black to a minimal area
beside the right corner.”), and Chunk #5 is associated with
Goal 2 (“Prepare the knight for checkmate.”). Finally, Chunk
#4 is associated with the highest goal in the hierarchy, Goal
1 (“Deliver checkmate.”).

All the described chunks were detected automatically by
using the methods described in Section III. As it can be
seen from the descriptions above, they cover all 11 goals
presented in the textbook instructions.

Figure 3 shows the progress of the students by means
of the different goals executed in their playout games. The
results closely resemble the ones demonstrated in Figure 2:
Student 1, the strongest of all three students in terms of chess
strength, was the first to master all 11 goals given in the
textbook instructions, and all three players demonstrated in
their games a progress towards the final goal – successfully
checkmating the opponent’s king.

In the figure, it can be seen that some goals were only
partially executed. This happened on occasions where a
particular goal (as presented in Table I) consisted of more
than one procedural chunk (as given in Tables II, III, and
IV). In the first stage of the experiment, the students were
merely able to execute the most intuitive goals. One such
goal is Goal 5 (“Approach black from the center.”), which is
very intuitive for a human – it is useful for the white king to
approach the black king from the central part of the board.
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Figure 3. Number of instruction goals the students successfully executed
in the playout games against the computer.

V. CONCLUSION AND FUTURE WORK

In this paper, we studied how procedural knowledge for
solving problems in a domain is learned operationally by
students from “textbook instructions” (a manual). In our
study, textbook instructions had the form of if-then rules that
specify goals to be achieved in solving a particular problem
in the domain, ordered according to the degree of ambition
of the goals which roughly corresponds to the time order of
subtasks.

In our experimental study, we measured the students’
progress in assimilating this procedural knowledge by ob-
serving their skill at the given task (checkmate in the KBNK
endgame). Roughly, our subjects were just slightly better
than complete chess beginners.

We were interested in two questions:
1) How useful are the goal-oriented instructions to the

student as a help towards mastering the play in this
domain?

2) What was the form of the student’s “internal repre-
sentation” of the acquired knowledge? Our hypothesis
was that it was a goal-based representation with a
similar goal structure as in the instructions.

Our hypothesis regarding the students’ internal represen-
tation of the acquired skill was experimentally tested by
means of the identification of procedural chunks, using a
new method for chunk identification from games played.
Roughly, a procedural chunk is a sequence of chess moves
that all together belong to a chess concept, and are therefore
memorized by a player as a whole. The chunk identification
method is based on observing the times between consecutive
moves in a game played. Longer time intervals between
moves indicate boundaries between procedural chunks.

Our findings concerning the two questions above were as
follows:
• Finding regarding question (1): The students learned the

skill operationally in up to an hour’s time of studying
the instructions and testing their skill in actual problem

solving (playing the endgame). To put this result in
perspective, it should be remembered that even chess
grandmasters often have serious difficulties in playing
this endgame, occasionally failing to deliver mate at all.

• Finding regarding question (2): Automatically detected
procedural chunks in the students’ games corresponded
almost perfectly to the goal-oriented rules in the text-
book instructions. We also measured the dynamics of
acquiring these chunks during the learning time, that is
the number of different chunks appearing in consecutive
games played by a student.

As future work, we intend to strengthen these experimental
results by scaling up the experiments in terms of the number
of subjects, and by extending the experiments to other
domains (other chess tasks and domains other than chess).
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