
Building an Intelligent Tutoring System for Chess Endgames

Matej Guid, Martin Možina, Ciril Bohak, Aleksander Sadikov, and Ivan Bratko
Faculty of Computer and Information Science, University of Ljubljana, Tržaška cesta 25, Ljubljana, Slovenia

Keywords: Intelligent Tutoring Systems, Artificial Intelligence, Education, Problem Solving, Chess Endgames, Chess

Abstract: We present the development of an intelligent tutoring system for chess endgames, and explain in detail the
system’s architecture that is comprised of five essential components. The rule-based domain model contains
a conceptualized domain theory, which serves as a bridge between the basic declarative domain theory and
procedural knowledge for concrete problem solving. The search engine is used to generate new chess problems
and to validate students’ solutions on the fly. The tutoring model represents pedagogical knowledge and
follows the standard model-tracing approach. The student model contains the knowledge about the user in the
form of a skill meter, aiming to show the level of a student’s understanding of particular skills. Finally, the
user interface is where the interaction between a student and the tutor takes place.

1 INTRODUCTION

Several studies have demonstrated benefits of chess
in education. Namely, the findings showed that chess
can lead to significant progress in problem solv-
ing, memory enhancement, focusing, scoring of IQ
tests, creativity, critical thinking, visualizing, recog-
nizing patterns, and enhancing meta-cognitive skills
(Kazemi et al., 2012). Developing a successful intelli-
gent tutoring system (ITS) for chess endgames would
therefore have a significant practical value.

While our primary goal is to develop an efficient
intelligent tutoring system that leads to robust learn-
ing, we deem the secondary goal to be equally im-
portant: to obtain a formative evaluation of our meth-
ods to support automated conceptualization of learn-
ing domains (Možina et al., 2012). The purpose of
these methods is to partially automate the process of
developing ITSs and thus considerably decrease the
high costs of building them.

In the present paper, we present the development
of the ITS for chess endgames. We describe in detail
the architecture of the system and briefly address our
future work. Our web-based tutoring application is
available at http://www.ailab.si/chesstutor.

2 ARCHITECTURE

The basic architecture of our chess-endgame tutor is
demonstrated in Fig. 1. The tutor uses three types of
knowledge for teaching chess endgames:

• expert knowledge about the target chess endgame,
stored in the domain model,

• pedagogical knowledge about the teaching strate-
gies in this endgame, represented in the tutoring
model,

• knowledge about the student and his or her learn-
ing progress, stored in the student model.

The other two components are the user interface,
where the student and the tutor interact, and a
search engine that enables the tutor to verify student
problem-solving solutions and to generate appropri-
ate feedback when required.

TUTOR

Search
Engine

Student Model

Tutoring Model

User
Interface

Domain Model

1

22

4

1

1

3

5

5

6

4

Figure 1: The chess-endgame tutor architecture. The arrows
represent the data flow between individual components, and
the numbers show the time order of the data interchange in
a tutoring session.

2.1 A Cycle in the Tutoring Session

In a typical problem-solving session with the student,
the task of the tutor is to present a chess problem
(chess position with a suitable goal) with respect to
the student’s abilities and her current state of knowl-
edge about the domain. For example, if the stu-
dent has just failed to achieve the given goal from
the same position on her previous attempt, the tutor
may present additional information in various possi-
ble forms (e.g. hints, additional instructions, colored
squares and arrows on the chessboard, etc.) to aid the
student.

The student’s solution to the problem, or a solu-
tion step, is received through the user interface. This
information is validated on the fly in real-time by the
search engine, to verify whether the student’s move
leads to the achievement of the given goal. If not, the
tutor warns the student about the error, and the student
can restart the problem or investigate why her solution
is inappropriate. The search engine also plays an im-
portant role in the selection of a goal to be achieved
next. The rules from the domain model are used to
identify the candidate goals, and the search engine
then evaluates which of these goals are achievable.
Based on so-called malrules in the domain model, it
may also detect possible misconceptions in the stu-
dent’s knowledge.

The output of the search engine represents the ba-
sis for the selection of the next tutorial action, and for
an update of the student model. The tutor’s represen-
tation of the student is available to her in a form of
a skill meter, which represents an estimate of the stu-
dent’s mastery of particular skills (or goals). The skill
meter is updated, and the tutor goes to the next cycle.

Fig. 3 displays the user interface of the tutor. On
the top of the screen there is the navigation panel that
enables switching between tutor mode and play mode
(see Section 2.3 for explanations), access to instruc-
tions and example games, and information about the
time spent. On the left-hand side there is a large chess
board, with navigation buttons and last few moves
played below. On the right-hand side there is a space
for tutorial actions and the skill meter.

2.2 Domain Model

Chess endgames are a well-defined problem-solving
domain. Even elementary chess endgames can be suf-
ficiently complex and thus interesting to learn. In an
endgame of king, bishop, and knight versus a lone
king (also known as KBNK), for example, even op-
timal play in a checkmating procedure may take as
many as 33 moves. There are many recorded cases

when strong players, including grandmasters, failed
to win this endgame.

We use a rule-based domain model. This type
of domain models is typical for cognitive tutors that
proved to be successful in improving student learning
in a range of learning domains (Anderson et al., 1995;
Koedinger et al., 1997; Koedinger and Corbett, 2006).
The domain model was obtained semi-automatically
as a result of domain conceptualization, as presented
in (Možina et al., 2012) and (Guid et al., 2009).

2.2.1 Conceptualization of Domain Knowledge

Conceptualization of learning domains can be viewed
as one of the key components in the construction of
intelligent tutoring systems. The role of domain con-
ceptualization is as follows. In complex domains, the
connection between the basic domain theory (axioms,
laws, formulas, rules of the game, etc.) and prob-
lem solutions is usually rather complex and hard for
a human to execute. Therefore, there is typically a
need for an intermediate theory, conceptualized do-
main theory, which serves as a bridge between the ba-
sic declarative domain theory and procedural knowl-
edge for concrete problem solving.

In terms of a derivation chain, the basic domain
theory (axioms, etc.) logically entails a “conceptu-
alized domain theory,” which in turn entails prob-
lem solutions. Logically, the basic domain theory
also entails problems solutions, but at much higher
problem-solving effort. The basic theory is typi-
cally “non-operational” for a human (requires exces-
sive computation, or it may be too complex to mem-
orize), whereas the conceptualized theory is “human-
assimilable.” These relations are illustrated in Fig. 2.

original theory problem solution

original theory problem solutionconceptualized domain theory

Figure 2: The result of a domain conceptualization. Arrows
indicate derivation, and the length of an arrow indicates the
complexity of the derivation.

A conceptualized domain is a problem-solving
tool for a human, and therefore should be simple and
compact, so that it can be understood, memorized,
and executed by the student.

Fig. 4 shows a problem state space in a typical
problem-solving setting. The circles represent prob-
lem states, and arrows represent available actions. In
domains of any interest the solution path requires too
excessive computation, or it is too difficult to memo-
rize for a student. To alleviate the student’s task, we
learn intermediate goals that can lead the student reli-
ably towards the solution of the problem (see Fig. 5).

Figure 3: The chess-endgame tutor user interface.

Our rule-based model consists of no more than 11
production rules, i.e., if-then statements suggesting
goals to be achieved when some conditions are met.
They are slightly adapted from (Guid et al., 2009).
Each production rule contains one goal, achievable
in d plies (i.e. half-moves). This depth parameter
is fixed and is set prior to conceptualization of do-
main knowledge. It enables to adapt the level of con-
ceptualization to the skill level of a targeted group of
students, since it determines to some extent the com-
plexity of learned rules (Mozina et al., 2010).

The goals are achievable in up to d plies, typi-
cally in several possible ways and move orders. The
search engine verifies on the fly whether the student’s
move is correct or incorrect in the sense of achieving
the given goal. Moreover, the search engine can also
evaluate whether the move is acceptable (in terms of
approaching to checkmate) even in cases when it ac-
tually fails to achieve of the goal – in such a case the
student will receive a different type of feedback as if
the move was entirely bad.

1

PROBLEM STATE SPACE

start nodestart node

. . .

. . . (too) long

solution path

. . .

: : :

. . .
solution path

:

:

:

:

:

:
. . .

: : :
. . . goal nodes

Figure 4: Problem state space in interesting domains.

2.3 Tutoring Model

The cognitive theory underlying our chess-endgame
tutor is compatible with the ACT-R learning theory
(Anderson and Lebiere, 1998). The model-tracing
approach to intelligent tutoring is used: the tutor as-
sesses and interprets students’ solution steps by com-
paring what the student does in any given situation
against the appropriate rule in the domain model (An-
derson et al., 1995). The production rules guide a
student reliably towards the final goal of achieving
checkmate within the allowed 50 moves, even with
a slowest possible realization of strategic goals (Guid
et al., 2009).

The tutor operates in two different modes:

Tutor Mode represents the main learning environ-
ment and thus the most important part of the tu-
tor. It enables the student to practice her skills
in a problem-solving context, executing suggested
goals and receiving feedback by the tutor.

1

LEARNING INTERMEDIATE GOALS

start nodes of

intermediate goalsintermediate goals

. . .

. . . goal nodes of

intermediate goals

. . .

: : :

. . .
intermediate goals

:

:

:

:

:

:
. . .

: : :
. . .

Figure 5: The role of intermediate goals.

Play Mode enables the student to test or practice her
skills in playing the endgame against the com-
puter, without any interventions by the tutor. The
student only has basic hints on disposal, given on
demand only. No move retracts are possible.

Beside text-based explanations the tutor also has an
option to use colors and arrows on the chessboard dis-
play when giving feedback to the student. For exam-
ple, to mark the squares that limit the area available to
the opponent’s king.

2.4 Student Model

In our chess-endgame tutor, the role of the student
model is primarily to help correct “incomplete” stu-
dent knowledge, and to help diagnose bugs in the
student’s knowledge. The knowledge is represented
in a form of a skill meter (see Fig. 3 on the right
side), aiming to show the level of student’s under-
standing of particular skills. Each of the skills cor-
responds to one production rule in the domain model.
We use one of the most popular methods for estimat-
ing students’ knowledge, that is Bayesian Knowledge
Tracing model (Corbett and Anderson, 1995). The
model uses four parameters per skill, which were in
our case tuned arbitrarily with the help from a chess
expert and will be continuously updated using student
performance data, to relate performance to learning
as well as possible. We use an open student model
to support students in evaluating their own learning
(Bull and Kay, 2007). The skill meter may assist the
student in making the choice of which skill to focus
on: the tutor allows the student to pick a random posi-
tion featuring the goal associated with particular skill.

3 CONCLUSIONS AND FUTURE
WORK

We followed some commonly accepted guidelines for
building intelligent tutoring systems and applied them
to the domain of chess endgames. The tutor is based
on a rule-based domain model that represents the re-
sult of using our methods for semi-automatic domain
conceptualization (Možina et al., 2012).

The main line of the future work is to evaluate the
proposed system. This includes both:

• summative evaluation: to examine the overall ed-
ucational impact of the tutor,

• formative evaluation: to assess the effectiveness
of the evolving design, in particular with respect
to usability of our semi-automatically derived do-
main model.

One of the features of our web-based application is an
ability to record students’ actions and times spent on
executing them. These data will represent the basis
for an assessment of student acquisition of skills and
understandings. As another aspect of the evaluation,
we intend to evaluate the applications’ usefulness and
its pedagogical abilities (Giannakos, 2010).

We also plan to extend the domain model to in-
clude several additional chess endgames.

REFERENCES

Anderson, J., Corbett, A., Koedinger, K., and Pelletier, R.
(1995). Cognitive tutors: Lessons learned. The Jour-
nal of the Learning Sciences, 4(2):167–207.

Anderson, J. R. and Lebiere, C. (1998). The atomic com-
ponents of thought. Lawrence Erlbaum Associates,
Mahwah.

Bull, S. and Kay, J. (2007). Student models that invite the
learner in: The smili open learner modelling frame-
work. International Journal of Artificial Intelligence
in Education, 17(2):89–120.

Corbett, A. and Anderson, J. (1995). Knowledge trac-
ing: Modeling the acquisition of procedural knowl-
edge. User Modeling and User-Adapted Interaction,
4(4):253–278.

Giannakos, M. N. (2010). The evaluation of an e-learning
web-based platform. In Proceedings of the 2nd Inter-
national Conference on Computer Supported Educa-
tion, pages 433–438. SciTePress.

Guid, M., Možina, M., Sadikov, A., and Bratko, I. (2009).
Deriving concepts and strategies from chess table-
bases. In ACG, pages 195–207.

Kazemi, F., Yektayar, M., and Abad, A. M. B. (2012).
Investigation the impact of chess play on develop-
ing meta-cognitive ability and math problem-solving
power of students at different levels of education. Pro-
cedia - Social and Behavioral Sciences, 32:372 – 379.

Koedinger, K., Anderson, J., Hadley, W., and Mark, M.
(1997). Intelligent tutoring goes to school in the big
city. International Journal of Artificial Intelligence in
Education, 8(1):30–43.

Koedinger, K. and Corbett, A. (2006). Cognitive tutors:
Technology bringing learning sciences to the class-
room. In Sawyer, R., editor, The Cambridge hand-
book of the learning sciences, pages 61–78. Cam-
bridge University Press, New York.

Možina, M., Guid, M., Sadikov, A., Groznik, V., and
Bratko, I. (2012). Goal-oriented conceptualization of
procedural knowledge. In Lecture Notes in Computer
Science, volume 7315, pages 286–291.

Mozina, M., Guid, M., Sadikov, A., Groznik, V., Krivec,
J., and Bratko, I. (2010). Conceptualizing procedural
knowledge targeted at students with different skill lev-
els. In de Baker, R. S. J., Merceron, A., and Jr., P. I. P.,
editors, EDM, pages 309–310.

