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Objective:  The  paper  describes  the  use  of  expert’s  knowledge  in practice  and  the  efficiency  of  a  recently
developed  technique  called  argument-based  machine  learning  (ABML)  in the  knowledge  elicitation  pro-
cess. We  are  developing  a  neurological  decision  support  system  to  help  the  neurologists  differentiate
between  three  types  of tremors:  Parkinsonian,  essential,  and  mixed  tremor  (comorbidity).  The  system
is intended  to  act as  a  second  opinion  for the  neurologists,  and  most  importantly  to help  them  reduce
the  number  of patients  in  the  “gray  area”  that  require  a very  costly  further  examination  (DaTSCAN).  We
strive to elicit  comprehensible  and medically  meaningful  knowledge  in  such  a way  that  it does  not  come
at  the  cost  of diagnostic  accuracy.
Materials  and  methods:  To  alleviate  the  difficult  problem  of knowledge  elicitation  from  data  and  domain
experts,  we  used  ABML.  ABML  guides  the expert  to explain  critical  special  cases  which  cannot  be  handled
automatically  by  machine  learning.  This  very  efficiently  reduces  the  expert’s  workload,  and  combines
expert’s  knowledge  with  learning  data.  122  patients  were  enrolled  into  the  study.
Results:  The  classification  accuracy  of  the  final  model  was  91%.  Equally  important,  the  initial  and  the  final

models  were  also  evaluated  for their  comprehensibility  by  the  neurologists.  All  13  rules  of  the  final  model
were deemed  as  appropriate  to be  able  to  support  its decisions  with  good  explanations.
Conclusion:  The  paper  demonstrates  ABML’s  advantage  in combining  machine  learning  and  expert  knowl-
edge.  The  accuracy  of  the  system  is  very  high  with  respect  to  the  current  state-of-the-art  in  clinical
practice,  and  the  system’s  knowledge  base  is  assessed  to be  very  consistent  from  a  medical  point  of  view.
This opens  up  the possibility  to use  the  system  also  as  a teaching  tool.

© 2012 Elsevier B.V. All rights reserved.
. Introduction and motivation

Essential tremor (ET) is one of the most prevalent movement
isorders [1].  It is characterized by postural and kinetic tremor
ith a frequency between 6 and 12 Hz. Although it is regarded

s a symmetrical tremor, ET usually starts in one upper limb and
hen spreads to the other side affecting the contralateral upper
imb, consequently spreading to the neck and vocal cords, giving
Please cite this article in press as: Groznik V, et al. Elicitation of neurologica
(2012), http://dx.doi.org/10.1016/j.artmed.2012.08.003

ise to the characteristic clinical picture of the disorder. However,
here are many deviations from this classical presentation of ET,
.g. bilateral tremor onset, limb tremor only, head tremor only,
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isolated voice tremor. Parkinsonian tremor (PT), on the other hand,
is a resting tremor classically described as “pill rolling” tremor with
a frequency between 4 and 6 Hz. It is one of the major signs of
Parkinson’s disease (PD), which also includes bradykinesia, rigidity
and postural instability. PT is typically asymmetrical, being more
pronounced on the side more affected from the disease onset.
Although distinct clinical entities, ET is very often misdiagnosed as
PT [2].  Results from clinical studies show that ET is correctly diag-
nosed in 50–63%, whereas PT in 76% of the cases. Co-existence of
both disorders is also possible [3]. In addition, PT can be very often
observed when the upper limbs are stretched (postural tremor)
and even during limb movement (kinetic tremor), which further
complicates the differential diagnosis of the tremors.

Digitalized spirography is a quantitative method of tremor
l knowledge with argument-based machine learning. Artif Intell Med

assessment [4],  based on spiral drawing by the patient on a digi-
tal tablet. In addition to precise measurement of tremor frequency,
spirography describes tremors with additional parameters – these,
together with physical neurological examination, offer new means

dx.doi.org/10.1016/j.artmed.2012.08.003
dx.doi.org/10.1016/j.artmed.2012.08.003
http://www.sciencedirect.com/science/journal/09333657
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o differentiate between numerous types of tremors [4,5], includ-
ng ET and PT. The use of spirography for diagnostic purposes is a
elatively recent idea, and only a few medical centers in the world
re currently using it, among them Columbia University Medical
enter and University Clinical Centre Ljubljana.

The paper describes the process of building a decision support
ystem (DSS) for diagnosing and differentiating between afore-
entioned three types of tremors, namely ET, PT, and mixed

remor (MT; both ET and PT at the same time). It mainly focuses
n the task of knowledge acquisition as this is usually the most
hallenging part of the project. The motivation for the DSS is as
ollows. Although several sets of guidelines for diagnosing both ET
nd PT do exist [6,7], none of them enjoys general consensus in
he community. Furthermore, none of these guidelines takes into
ccount additional information from spirography. Our DSS com-
ines all sources of knowledge, experts’ background knowledge,
achine-generated knowledge, and spirography data in an attempt

o improve prediction accuracy. However, at the same time and
ven more importantly, our DSS uses a very comprehensible model,
aking it very suitable for explaining its decisions. Therefore it

ould be used as a teaching tool as well.
Apart from improved data acquisition and storage, the main

xpected benefits of the DSS are twofold. By acting as a second opin-
on, mostly for difficult cases, the combined diagnostic accuracy is
xpected to increase, reducing the need for patients to undergo an
nvasive, and very expensive further examination (DaTSCAN). This

ill also save both patients’ and doctors’ time.
Our knowledge acquisition process was based on argument-

ased machine learning (ABML) [8].  ABML seamlessly combines
he domain expert’s knowledge with machine-induced knowledge,
nd is very suitable for the task of knowledge elicitation as it
nvolves the expert in a very natural dialogue-like way  [9].  The
xpert is not required to give general knowledge of the domain
which can be hard), but is only asked to explain concrete examples
hich the machine cannot correctly classify on its own. The pro-

ess usually results in improved accuracy and comprehensibility
8]. Such focused knowledge elicitation also saves a lot of expert’s
ime.

The organization of the paper is as follows. Section 2 discusses
elated work and through it additional motivation for our work.
ection 3 describes the domain, including the spirography and the
aTSCAN examinations. Section 4 relates the essential method-
logical ingredients of our approach and Section 5 sheds light
n how the approach was applied in practice through detailed
xamples. The evaluation setup and the results are presented in
ections 6 and 7, respectively. The discussion of the results follows
n Section 8, and at the end we give some concluding remarks and
lans for the future.

. Related work

The knowledge acquisition bottleneck [10] is one of the main
ssues in building a DSS, particularly in medical domains [11]. Sev-
ral knowledge elicitation approaches have been proposed [12–16].
hese approaches elicit knowledge by direct interaction between
he expert and the knowledge engineer (e.g. questionnaires, inter-
iews, observations, etc.). However, the problem of knowledge
licitation remains open [17,18].

There are several approaches to knowledge elicitation in
edicine. For the use in earlier medical expert systems experts

rovided their knowledge in the form of general rules which were
Please cite this article in press as: Groznik V, et al. Elicitation of neurologica
(2012), http://dx.doi.org/10.1016/j.artmed.2012.08.003

hen encoded in the system. Expert system that uses this kind of
pproach is MYCIN.

Since it is hard for the expert to express the overall knowledge
f the whole domain taking into account all of the specific cases,
 PRESS
 in Medicine xxx (2012) xxx– xxx

the approach of providing explanations to specific cases seems
to work better in practice. This approach is used by ripple down
rules (RDRs) which can be treated as a binary tree. Each node in
a tree represents one if-(and)-then rule which has two branches.
When a wrong classification occurs, a new rule is attached to the
appropriate branch resulting in one new node. By correcting wrong
classifications the tree grows over time. The weaknesses of the
method are that knowledge can be repeated in the knowledge base
and that it provides a single classification of the data [19]. To elimi-
nate the last weakness the multiple classification ripple down rules
have been developed to allow multiple independent classifications
[20]. A well known medical expert system based on RDRs technique
is Pathology Expert Interpretative Reporting System [21].

Forsyth and Rada proposed machine learning techniques as an
alternative approach to solving knowledge elicitation problem [22].
Although successful in building knowledge bases [23], the automat-
ically induced models are rarely compliant with the way experts
want their knowledge to be expressed. It is likely that incompre-
hensible models will not be trusted by the experts and users.

Expert system that relies mainly on machine learning tech-
niques for eliciting knowledge is Medical Knowledge Elicitation
System (MediKES). In MediKES the expert’s knowledge is elicited
in two steps. The first step is the knowledge acquisition step which
automatically elicits expert’s knowledge from the electronic medi-
cal record. After this step the system has a decision logic for medical
treatments from every expert at its disposal. Elicited knowledge is
then “visualized by concept mapping technique, which presents
the information graphically” [24] and makes it more understand-
able. However, the weak side of this system is that it can give us
odd results if, let us say, there is a physician who only has spe-
cific cases that have to be treated differently than others or if a
physician has a small number of cases or similar. The decision
logic for the treatment could therefore be somewhat unusual if not
incorrect.

There is a common belief that combining machine learning and
expert’s knowledge would give us the best results [25]. Induc-
tive learning system LINUS [26,27] uses CN2 [28] attribute-value
learner for learning diagnostic rules from the patients’ data and
combines them with the background knowledge of the domain
expert. Knowledge was given “in the form of typical co-occurrences
of symptoms” [29]. LINUS was  used for learning rules for early
diagnosis of rheumatic diseases.

3. Domain description

Our data set consists of 122 patients diagnosed and treated at
the Department of Neurology, University Medical Centre Ljubljana.
The patients were diagnosed by a physician with either ET, PT, or
MT which represent possible class values for our classification task.

The class distribution is: 52 patients diagnosed with ET, 46
patients with PT and 24 patients with MT.

The patients were initially described using 69 attributes. These
were reduced to 47 attributes during the preprocessing of these
data. The excluded attributes contained mostly unknown values
or comments and were as such irrelevant for building the model.
One of the excluded attributes is the result of a DaTSCAN. About a
half of the attributes were derived from the patient’s history data
and the neurological examination, the other half included data from
spirography. All included attributes and their rate of missing values
are detailed in Table 1.
l knowledge with argument-based machine learning. Artif Intell Med

3.1. Spirography

Digitalized spirography is a relatively new computer-assisted
method for detection and evaluation of tremors [4].  It has

dx.doi.org/10.1016/j.artmed.2012.08.003
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Table 1
The initial attributes used at the beginning of the knowledge elicitation process and their rate of missing values.

Attribute Description Number of missing
values, n (%)

Age Age of a patient 6 (5.26)
Alcohol.response Response of tremor on alcohol – ET diminishes on alcohol in about 60% of

cases; PT does not
88 (77.19)

Bare.left.freq.harmonics Harmonic frequencies on spectral analysis when drawing without
template – left hand

9 (7.89)

Bare.left.freq.maxamp Maximal amplitude frequency of the tremor on the left side during bare
hand drawing

33 (28.95)

Bare.left.freq.range Frequency range of the tremor on the left side during bare hand drawing 24 (21.05)
Bare.left.radius.angle Radius–angle transform on the left side during bare-hand drawing 20 (17.54)
Bare.left.speed.time Speed–time transform on the left side during bare-hand drawing 19 (16.67)
Bare.right.freq.harmonics Harmonic frequencies on spectral analysis when drawing without

template on the right side
11 (9.65)

Bare.right.freq.maxamp Maximal amplitude frequency of the tremor on the right side during bare
hand drawing

38 (33.33)

Bare.right.freq.range Frequency range of the tremor on the right side during bare hand drawing 16 (14.04)
Bare.right.radius.angle Radius–angle transform on the right side during bare-hand drawing 11 (9.65)
Bare.right.speed.time Speed–time transform on the right side during bare-hand drawing 8 (7.02)
Bradykinesia.left Slowed movement on the left side 5 (4.39)
Bradykinesia.right Slowed movement on the right side 5 (4.39)
Diagnosis Diagnosis 0 (0.00)
Disease.duration Duration of the disease 53 (46.49)
Education Education 11 (9.65)
Gait  Clinical neurological examination of gait; gait has specificities in PB and

other neurological disorders; gait is normal in ET
80 (70.18)

History Family history (is there somebody in your family who has the same
condition (tremor/disease?))

29 (25.44)

Hypokinesia.left Paucity of movement at the left side 51 (44.74)
Hypokinesia.right Paucity of movement at the right side 51 (44.74)
Kinetic.tremor.up.left Tremor when the limb moves (isotonic contraction) on the left upper

extremity
12 (10.53)

Kinetic.tremor.up.right Tremor when the limb moves (isotonic contraction) on the right upper
extremity

12 (10.53)

Postural.tremor.up.left Tremor when the limb is activated, but does not move (isometric
contraction) on the left upper extremity

10 (8.77)

Postural.tremor.up.right Tremor when the limb is activated, but does not move (isometric
contraction) on the right upper extremity

10 (8.77)

Qualitative.spiral Qualitative evaluation of the spiral drawing 10 (8.77)
Resting.tremor.up.left Tremor when the limb rests on the left side 6 (5.26)
Resting.tremor.up.right Tremor when the limb rests on the right upper extremity 6 (5.26)
Rigidity.low.left Rigidity hypertonia of extrapyramidal (parkinsonian) type on the left

lower extremity
92 (80.70)

Rigidity.low.right Rigidity hypertonia of extrapyramidal (parkinsonian) type on the right
lower extremity

92 (80.70)

Rigidity.neck Rigidity hypertonia of extrapyramidal (parkinsonian) type on the neck 97 (85.09)
Rigidity.up.left Rigidity hypertonia of extrapyramidal (parkinsonian) type on the left

upper extremity
7 (6.14)

Rigidity.up.right Rigidity hypertonia of extrapyramidal (parkinsonian) type on the right
upper extremity

7 (6.14)

Sex  Gender 0 (0.00)
Template.left.freq.harmonics Harmonic frequencies on spectral analysis during template drawing on the

left  side
9 (7.89)

Template.left.freq.maxamp Maximal amplitude frequency on the left side during template drawing 55 (48.25)
Template.left.freq.range Frequency range on the left side during template drawing 49 (42.98)
Template.left.radius.angle Radius–angle transform on the left side during template drawing 44 (38.60)
Template.left.speed.time Speed–time transform on the left side during template drawing 43 (37.72)
Template.right.freq.harmonics Harmonic frequencies on spectral analysis during template drawing on the

right side
10 (8.77)

Template.right.freq.maxamp Maximal amplitude frequency of the tremor on the right side during
template drawing

53 (46.49)

Template.right.freq.range Frequency range of the tremor on the right side during template drawing 53 (46.49)
Template.right.radius.angle Radius–angle transform on the right side during template drawing 46 (40.35)
Template.right.speed.time Speed–time transform on the right side during template drawing 54 (47.37)
Tremor.duration Duration of the tremor 14 (12.28)

 start?
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Tremor.neck Neck tremor 

Tremor.start On which side did the tremor

een used to evaluate different types of tremor. The system for
cquisition and analysis of spiral drawings is composed of a com-
Please cite this article in press as: Groznik V, et al. Elicitation of neurologica
(2012), http://dx.doi.org/10.1016/j.artmed.2012.08.003

uter, a tablet for digital acquisition of the signal and a special
encil. The task of the patient is to draw an Archimedes spiral on the
ablet. Different quantitative parameters are provided by spirog-
aphy. Besides the spectral analysis of the acquired signal, which
10 (8.77)
 44 (38.60)

provides information about the tremor frequency, commonly
used are also radius–angle transform and speed–time transform.
l knowledge with argument-based machine learning. Artif Intell Med

Radius–angle transform depicts changes of the radius as a func-
tion of changes of the angle during spiral drawing. Speed–time
transform represents acceleration during spiral drawing. Linear
and angular acceleration transform is being calculated by the

dx.doi.org/10.1016/j.artmed.2012.08.003
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Fig. 1. Spiral drawing of a patient with an essential tremor: (a) left hand, (b) right hand.
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4.2. Handling comorbidities

The problem domain described in this paper contains a class
Fig. 2. Spiral drawing of a patient with Pa

ystem. Different types of tremor typically have different values
or various parameters. For example, Parkinsonian tremor has a
requency between 4 and 6 Hz, and a characteristic radius–angle
nd speed–time transform [30].

Spiral drawing of a patient with ET can be seen in Fig. 1, of a
atient with PT in Fig. 2 and of a patient with MT  in Fig. 3. Spiral on
he left side is made with a left hand, and on the right side with a
ight hand.

.2. DaTSCAN

DaTSCAN is a single photon emission computed tomography of
he dopamine transporter (DAT) in the striatum. During the proce-
ure, a radioactive agent (ioflupane (123)I-FP-CIT) is injected in the
lood. Ioflupane (123)I-FP-CIT specifically binds to the dopamine
ransporter on the presynaptic membrane in the striatum. DAT is a
ransmembrane protein that re-uptakes dopamine from the synap-
ic cleft into the presynaptic neuron. In PD, because of degeneration
f substantia nigra, which projects to the basal ganglia, there is a
emarkable loss of DAT activity (as labeled by ioflupane (123)I-FP-
IT) in nucleus caudatus and putamen. On the contrary ioflupane
123)I-FP-CIT DAT activity in ET is normal. Although it has been
Please cite this article in press as: Groznik V, et al. Elicitation of neurologica
(2012), http://dx.doi.org/10.1016/j.artmed.2012.08.003

roven as a useful tool for the differentiation between ET and
D with high sensitivity (93.7%) and specificity (97.3%), the main
isadvantages of the method are its high cost and limited access
o the method, as it is usually available in bigger hospitals only
31].
nian tremor: (a) left hand, (b) right hand.

4. Methodology

In this section we describe the essential ingredients of our
approach: ABML learning, the handling of comorbidities, and the
interaction between the expert and the learning program (ABML
refinement loop).

4.1. Argument-based machine learning

ABML [8] is machine learning extended with concepts from
argumentation. In ABML, arguments are used as means for experts
to elicit some of their knowledge through explanations of the learn-
ing examples. The experts need to focus on one specific case at a
time only and provide knowledge that seems relevant for this case.
We will use the ABCN2 [8] method, an argument based extension
of the well-known CN2 method [28], that learns a set of unordered
probabilistic rules from examples with attached arguments, also
called argumented examples.1
l knowledge with argument-based machine learning. Artif Intell Med

variable with three values: ET, PT, and MT.  Since the MT  class

1 Reader can find more about ABML and ABCN2 in [8] and at its website
www.ailab.si/martin/abml.

dx.doi.org/10.1016/j.artmed.2012.08.003
http://www.ailab.si/martin/abml
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Fig. 3. Spiral drawing of a patient with

mplies the presence of essential tremor and Parkinsonian tremor
comorbidity), a rule learning method will have difficulties distin-
uishing between ET and MT  (and likewise between PT and MT). To
vert this difficulty, we  decided to translate our three-class problem
nto two two-class problems. In the first, ET and MT  are combined
n EMT  (essential mixed)  class. All patients in the EMT  class contain
ome signs of essential tremor. The rules for EMT  would therefore
ontain in their conditions features that are indicating essential
remor and are not indicating Parkinsonian tremor. While it is true
hat EMT contains patients with Parkinsonian tremor (within the

T class), the features indicating Parkinsonian tremor would not
e included, as they are not relevant to distinguish between the
MT  and PT classes.

In the learning problem with EMT  and PT, we learn a set of rules
or EMT  class only. We  skip learning rules for PT, as EMT  contains
lso patients with Parkinsonian tremor, therefore it is unlikely that
earning rules for PT would produce good and understandable rules
or Parkinsonian tremor. The second two-class problem is analo-
ous to the first one, where PT and MT  are combined into PMT
Parkinsonian mixed)  class. The results of learning in the second
roblem is a set of rules for PMT  class.

To diagnose new cases with the induced rules, we need a
echanism to enable reasoning about new cases. We  developed a

echnique that can infer a classification in one of the three possible
lasses from induced rules for EMT  and PMT  classes.

Let e be the example to classify. Let REMT be a set of rules that
over example e and predict the EMT  class. Similarly, rules in RPMT

redict PMT class and cover e. Let probability P(e = EMT), where
 = EMT  is an abbreviation for class(e) = EMT, be the predicted class
robability of the “best” rule (with highest predicted class probabil-

ty) from REMT and P(e = PMT) the predicted class probability of the
best” rule from RPMT. If REMT(or RPMT) is empty, then P(e = EMT) = 0
or P(e = PMT) = 0). Our method will use the following formulae to
ompute the probabilities for the three classes:

P(e = ET) = 1 − P(e = PMT),

P(e = PT) = 1 − P(e = EMT),

P(e = MT) = P(e = EMT) + P(e = PMT) − 1,

here P(e = ET),  P(e = PT),  P(e = MT) correspond to predicted prob-
bilities of ET, PT, and MT  classes, respectively. In special cases,
Please cite this article in press as: Groznik V, et al. Elicitation of neurologica
(2012), http://dx.doi.org/10.1016/j.artmed.2012.08.003

here the sum P(e = EMT) + P(e = PMT) is less than one, the proba-
ility P(e = MT) would be negative. This happens when there are no
ules covering example e (REMT or RPMT is empty). In such cases, we
rst set the probability P(e = MT) to zero and afterwards normalize
d tremor: (a) left hand, (b) right hand.

the probabilities P(e = ET), P(e = PT), P(e = MT) to sum to one. Example
e is classified as the class with the highest predicted probability.

The described mechanism was  used during the knowledge
elicitation loop presented in the following section. An improved
strategy for classification, that can adjust for the change in class
distribution between the old and the new data, is described within
Section 6.

4.3. Interactions between expert and ABCN2

As asking experts to give arguments to the whole learning set
is not feasible, we use the following loop to pick out the critical
examples that should be explained by the expert.

Step 1: Learn a hypothesis with ABCN2 using given data.
Step 2: Find the “most critical” example and present it to the

expert. If a critical example cannot be found, stop the pro-
cedure.

Step 3: The expert explains the example; the explanation is
encoded in arguments and attached to the learning exam-
ple.

Step 4: Return to step 1.

To finalize the procedure, we  need to answer the following two
questions: (a) How do we select critical examples? and (b) How can
we ensure to get all necessary information for the chosen example?

4.3.1. Identifying critical examples
A critical example is an example the current hypothesis cannot

explain well. As our method gives probabilistic class predictions, we
will first identify the “most problematic” example, with the highest
probabilistic error. To estimate the probabilistic error we used a
k-fold cross-validation repeated n times (e.g. n = 4, k = 5), so that
each example is tested n times. The critical example is thus selected
according to the following two  rules.

1 If the problematic example is from MT,  it becomes the critical
example.

2 If the problematic example is from the ET (or PT) class, the method
will seek out which of the rules predicting PMT  (or EMT) is the
culprit for the example’s misclassification. As the problematic
rule is likely to be bad since it covers our problematic exam-
l knowledge with argument-based machine learning. Artif Intell Med

ple, the critical example will become an example from PT or MT
class (or ET or MT)  covered by the problematic rule. Then, the
expert will be asked to explain what are the reasons that this
patient was diagnosed with Parkinsonian tremor (or essential

dx.doi.org/10.1016/j.artmed.2012.08.003
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tremor). Explaining this example should lead to the replacement
by the ABCN2 algorithm of the problematic rule with a better
one for the PMT  (or EMT) class, which hopefully will not cover
the problematic example.

.3.2. Are expert’s arguments good or should they be improved?
Here we describe in details step 3 of the above algorithm:

tep 3a: Explaining critical example. If the example is from the
MT  class, the expert can be asked to explain its Parkin-
sonian and essential signs (which happens when the
problematic example is from MT)  or to explain only one
of the diseases. In other two cases (ET or PT), the expert
always explains only signs relevant to the example’s class.
The expert then articulates a set of reasons suggesting
the example’s class value. The provided argument should
contain a minimal number of reasons to avoid overspeci-
fied arguments.

tep 3b: Adding arguments to example. An argument is given in
natural language and needs to be translated into domain
description language (attributes). If the argument men-
tions concepts currently not present in the domain, these
concepts need to be included in the domain (as new
attributes) before the argument can be added to the exam-
ple.

Step 3c: Discovering counter examples. Counter examples are
used to spot if an argument is sufficient to successfully
explain the critical example or not. If not, ABCN2 will select
a counter example. A counter example has the opposite
class of the critical example, however it is covered by the
rule induced from the given arguments.

tep 3d: Improving arguments with counter examples. The
expert has to revise his initial argument with respect to
the counter example.

tep 3e: Return to step 3c if counter example found.

. Knowledge elicitation with ABML

The knowledge elicitation process consisted of 19 iterations.
Please cite this article in press as: Groznik V, et al. Elicitation of neurologica
(2012), http://dx.doi.org/10.1016/j.artmed.2012.08.003

uring the process, 17 new attributes were included into the
omain. All new attributes were derived from the original
ttributes and are based on the explanations given by the expert.
hey are described in Table 2.

able 2
he new attributes derived from the original ones during the knowledge elicitation proce
iven  by the expert.

Attribute Description 

Sim.tremor.start Bilateral tremor start 

Diff.age.tremor.duration Difference between the age of the patient 

Diff.disease.tremor.duration Difference between the duration of the dis
Sim.resting.tremor.up Bilaterally equal resting tremor on the upp
Sim.postural.tremor.up Bilaterally equal postural tremor on the up
Sim.rigidity.up Bilaterally equal rigidity of the upper limb
Sim.bare.speed.time Bilaterally equal speed–time transform-ba
Sim.bare.radius.angle Bilaterally equal radius–angle transform-b
Sim.template.speed.time Bilaterally equal speed–time transform-te
Sim.template.radius.angle Bilaterally equal radius–angle transform-t
Bradykinesia At least one sided bradykinesia 

Resting.tremor.up At least one sided resting tremor 

Postural.tremor.up At least one sided postural tremor 

Rigidity.up At least one sided rigidity 

Harmonics At least one harmonic at any condition 

Spiro.Parkinsonian.only All spirography data are parkinsonian 

Spiro.Essential.only All spirography data are essential 
 PRESS
 in Medicine xxx (2012) xxx– xxx

5.1. Argumentation of examples from class ET/PT

At the start of the process, only original attributes were used
and no arguments have been given yet. Example E.2 (classified
as ET in the data set) was the first critical example selected by
our algorithm. The expert was  asked to describe which features
of E.2 are in favor of ET. He selected the following features: resting
tremor, rigidity, and bradykinesia, and chose bradykinesia (repre-
sented with two attributes in the data set, one for the left side and
one for the right side) to be the most influential one of the three
features. The expert used his domain knowledge to come up with
the following answer: “E.2 is ET because there is no bradykine-
sia, either on the left nor on the right side.” Based on his general
knowledge about the domain he also explained that the side (left or
right) does not play any particular role in differentiating between ET
and PT.

The expert’s explanation led the knowledge engineer to
introduce new attribute Bradykinesia with possible values true
(bradykinesia is present on the left side or on the right side)
and false (bradykinesia was  not indicated on either side). At
the same time the original two attributes were excluded from
the domain – it is their combination (reflected in the expert’s
argument) that provides relevant information according to the
expert.

Based on the expert’s explanation, argument “Bradykinesia is
false” was  added as the argument for ET to the critical example
E.2. No counter examples were found by the method and thus the
first iteration was  concluded. New rules were induced before enter-
ing the next iteration. One of the notable changes was that the
following rule appeared:
IF Bradykinesia = false THEN class = EMT;

The rule covers 20 learning examples, and all of them are from class
ET.

5.2. Argumentation of examples from class MT

In the previously described iteration the critical example E.2
was classified as purely ET by the neurologist. In one of the fol-
lowing iterations, however, the critical example E.61 was  classified
as both PT and ET. In such a case, the expert is asked to describe
l knowledge with argument-based machine learning. Artif Intell Med

which features are in favor of ET and which features are in favor
of PT. The expert explained that the presence of postural tremor
speaks in favor of ET, while the presence of rigidity speaks in favor
of PT. Again he relied on his general knowledge to advocate that

ss and their rate of missing values. These attributes are based on the explanations

Number of missing values, n (%)

0 (0.00)
and tremor duration 14 (12.28)
ease and duration of the tremor 59 (51.75)
er limbs 6 (5.26)
per limbs 10 (8.77)

s 7 (6.14)
re hand drawing 21 (18.42)
are hand drawing 23 (20.18)
mplate drawing 45 (39.47)
emplate drawing 49 (42.98)

5 (4.40)
6 (5.26)

10 (8.77)
7 (6.14)

10 (8.77)
0 (0.00)
0 (0.00)

dx.doi.org/10.1016/j.artmed.2012.08.003
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Table 3
Class distributions of learning and testing data.

Learning data (47) Testing data (67)

Essential Mixed Parkins. Essential Mixed Parkins.

n 22 13 12 28 10 29
25.53
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initial data had a skewed distribution, because we used the cases
readily available to our expert. These cases were mostly more dif-
ficult to diagnose correctly. The second set consists of unselected
Proportions 46.81% 27.66% 

eeping separate attributes for both the left and the right side does
ot have any impact on deciding between ET and PT, and suggested
ne attribute for each feature instead.

Attributes Postural.tremor.up and Rigidity.up were introduced
nto the domain instead of the original ones that describe features
ostural tremor and rigidity. The former was used as an argument
or ET and the latter was used as an argument for PT – both of
hese arguments were added to the critical example E.61. While no
ounter examples were found for the expert’s argument in favor
f ET, the method selected E.45 (ET) as a counter example for his
rgument in favor of PT.

The expert was now asked to compare the critical example E.61
ith counter example E.45, and to explain what is the most impor-

ant feature in favor of PT that applies for E.61 and does not apply
or E.45. According to the expert’s judgement, it was the presence
f harmonics in E.45 (or their absence in E.61), which are typical
f ET. The attribute Harmonics that was added into the domain
arlier with possible values of true and false was added to the pre-
ious argument. However, the method then found another counter
xample, E.30 (ET). The expert explained that the tremor in E.30 did
ot have symmetrical onset, as opposed to the one in the critical
xample. The argument was further extended using the attribute
im.tremor.start and added to the critical example E.61. No new
ounter examples were found and this particular iteration was
herefore concluded.

.3. Improving on the arguments

There are three possible ways for the expert’s arguments to be
mproved: (1) by the expert, with the help of counter examples
elected by the method, (2) by the method alone, and (3) by the
xpert, upon the observation of induced rules. The first option was
overed in the previous subsection. In the sequel, the latter two
ptions are described.

In the first iteration (as described in Section 5.1), the expert’s
rguments proved to be sufficient for the method to induce
ules with clear distributions. Sometimes, however, the method
utomatically finds additional restrictions to improve the expert’s
rgument. Such was the case in one of the following iterations,
here the following argument occurred: “Resting.tremor.up is

rue and Harmonics is false and sim.tremor.start is false.” The
ollowing rule that also occurs in the final model was induced with
he help of this argument:

F Resting.tremor.up = true AND Harmonics = false
AND sim.tremor.start = false AND spiro.Essential.only = false

HEN class = PMT;

he method automatically improved on the expert’s argument by
dding an additional restriction in the above rule. The attribute
piro.Essential.only was introduced by the expert in one of the
revious iterations. Its meaning is the following: if qualitative
ssessment of the spiral in any of the eight observations (attributes)
Please cite this article in press as: Groznik V, et al. Elicitation of neurologica
(2012), http://dx.doi.org/10.1016/j.artmed.2012.08.003

n the original data is essential, and none of them is Parkinsonian
or any other), then the value of spiro.Essential.only is true, oth-
rwise it is false. The above rule covers 14 examples (all of them
rom class ET) and was particularly praised by the expert – one of
% 41.79% 14.93% 43.28%

the reasons for this being that it effectively combines clinical data
with the results of spirography.

The third possibility occurred only once in the ABML knowl-
edge elicitation process presented in this paper. Upon the final
examination of the rules the expert approved all the obtained rules
but the following one:

IF Postural.tremor.up = true AND sim.Bradykinesia = true
THEN class = EMT;

Although the rule covers 23 examples (out of 47) and has a clear
distribution, the expert found the attribute sim.Bradykinesia
meaningless. This was  the automatically induced part of the rule
from the expert’s argument to the example E.61, as described in
Section 5.2. Based on the expert’s explanation this argument was
now extended to “Postural.tremor.up is true and Bradykinesia
= false.” Such changes should not by any circumstances be made
after examining results on the testing data, and it is particularly
important that the expert relies on his common knowledge of the
domain when doing this. The following rule was induced from the
expert’s argument:

IF Postural.tremor.up = true
AND Bradykinesia = false

THEN class = EMT;

Although the rule has notably worse coverage, the expert found it
consistent with his domain knowledge. At this point, the expert
approved all the rules in the final model and thus the iterative
process was concluded.

6. Evaluation setup

6.1. Data

The data was gathered in two batches; the first part contained
67 patients and the second, which we received a few months later,
contained 55 patients. When the first part arrived, we  made a strat-
ified split of the 67 patients into 47 patients used for learning the
model and the remaining 20 patients to evaluate it. The results of
that experiment can be found in [32].

When we  received the second part of the data, we  decided to
add these examples to the initial 20 testing examples to enhance
the evaluation (and make the results more significant). Of the new
55 cases only 47 could be used, as 8 of them were invalid due to
missing values of all clinical attributes. These 47 were thus added
to the initial 20, resulting in 67 testing examples in total.2

After examination of the new data, we noticed a significant
difference in class distributions. The figures in Table 3 show a
large increase of patients with Parkinsonian disease among the
newly obtained data. The subsequent analysis revealed that the
l knowledge with argument-based machine learning. Artif Intell Med

2 These 67 patients used for testing should not be confused with the initially
obtained 67 patients. It is by pure chance that the two numbers are the same.

dx.doi.org/10.1016/j.artmed.2012.08.003
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Table 4
The list of parameters used for tuning each method in the internal optimization process and their possible values.

Method Parameter Values

NB m-Estimate 2, 5, 10, 25, 50, 100

DT
Measure Information gain, Gini Index, Gain ratio
m-Estimate (post-pruning) 2, 5, 10, 25, 50, 100
Min.  instances in leaves (pre-pruning) 2, 3, 5, 10, 20

RF
Number of trees 10, 25, 50, 100
Min.  instances in leaves 2, 3, 5, 10

SVM
gamma  1/114, 2x where x ∈ [−5, − 3, − 1, 1, 3, 5]
nu 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
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Stepwise LR
Imputation
Add criteria (probability of F)
Remove criteria (probability o

onsecutive patients, and their distribution is as usually observed
ith respect to the incidence of the involved tremors; the rate of
ixed tremors is at about 15%, and the rest are equally spread

etween the essential and Parkinsonian tremors.

.2. Evaluation setup

The difference in distributions did not allow for the standard
valuation technique, where a model is learned on the learning
ata and tested on the testing data. Furthermore, we were unable
o run standard cross-validation, since the 47 learning examples
ere already used within the ABML refinement loop and hence

ould not be used as testing cases. To carry out the standard k-fold
ross-validation, the complete ABML refinement loop would have
o be repeated for each fold, with new expert’s arguments each
ime.

We used a variant of cross-validation where 67 testing exam-
les were split into 10 folds using stratified sampling. In each

teration the original 47 learning examples coupled with 9 folds
f the testing examples thus constituted the complete learning
ata, and the learned model was tested on the remaining fold.
onsequently, the 47 learning examples were never used during
esting.

With the described technique we evaluated ABCN2, naive Bayes
lassifier (NB), decision trees (DT), random forests (RF), SVM and
tepwise logistic regression (LR). The measures used were classifi-
ation accuracy (CA), area under the curve (AUC), sensitivity (sens.)
nd specificity (spec.).

In the experiments, we  used the implementations of the above
ethods as provided by the data mining package Orange.3 For SVM
e used Gaussian radial basis function.

All of the methods, except for ABCN2, were tuned using internal
ross-validation as follows. In each iteration of the aforementioned
ross-validation the complete learning data (47 learning examples
oupled with 9 folds) were in turn split into 10 folds for inter-
al cross-validation, using stratified sampling. In each iteration we

earned the optimal set of parameter settings for each method on
 “internal” folds, and tested the method with this setting on the
emaining fold. In this way we obtained 10 best sets of parame-
er values. The setting giving the highest CA was used to learn a

odel on all the learning examples, i.e. 47 learning examples plus
 “external” folds. The learned model was tested on the remaining
Please cite this article in press as: Groznik V, et al. Elicitation of neurologica
(2012), http://dx.doi.org/10.1016/j.artmed.2012.08.003

external” fold. Parameters used in the optimization process can
e found in Table 4. For tuning the parameters we used the Wrap
ethod from Orange package.

3 Reader can find more about Orange at its website http://orange.biolab.si/.
Average
0.01, 0.05, 0.1
0.1, 0.2, 0.5, 1.0

6.3. Tuning the decision model of ABCN2

Using new data, our goal was to evaluate the final rules obtained
with ABCN2 at the end of the elicitation process. As explained
above, it would be inappropriate to use all the examples (47 plus
9 folds) for ABCN2 learning. Therefore, we  used only the original
47 examples for ABCN2 learning, while the remaining data from 9
folds were used to (a) update the classification accuracy estimates
of the learned rules to account for new class distribution and (b)
improve the decision model from Section 4.2.

The classification accuracies of the rules were estimated using
the m-estimate [33] formula where parameter m was set to 2 (that
is the default setting for m in ABCN2). The m-estimate of CA of a
rule is:

CA(rule) = s  + m × pa

n + m
, (1)

where s is the number of positive examples covered by the rule, pa

is the prior probability of the predicted class, and n is the number
of all examples covered by the rule. During learning these accura-
cies were estimated on the original learning data (47 examples). To
account for the change in class distributions, the values s, pa, and n
were revised using only the remaining part of the learning data (9
folds) and the accuracy estimates of the rules were reevaluated.

With respect to improving the decision model, we used the
PILAR [34] algorithm to estimate probabilities P(e = EMT) and
P(e = PMT). This algorithm is known to produce better probabilis-
tic predictions with ABCN2 than other methods, e.g. using the most
accurate rule only. The idea of PILAR is to assign weights to each rule
while taking correlations between rules into account. The probabil-
ity of a class for a certain example is therefore obtained by summing
the weights of all the rules covering this example and computing
the probability through the logit transformation. After the prob-
abilities P(e = EMT) and P(e = PMT) are returned by the algorithm,
the formulae from Section 4.2 are used to compute probabilities
P(e = ET),  P(e = MT), and P(e = PT),  and to make a decision as to the
correct diagnosis.

7. Results

7.1. Quantitative comparison

Table 5 presents the results of applying different machine learn-
ing techniques: ABCN2, NB, DT, SVM, RF and stepwise LR. The
numbers represent classification accuracy, area under curve, speci-
l knowledge with argument-based machine learning. Artif Intell Med

ficity and sensitivity before and after knowledge elicitation process.
We have also included the confidence intervals for CA and AUC.

It is worth noting again that the non-standard 10-fold cross-
validation (described earlier) was  used for standard machine

dx.doi.org/10.1016/j.artmed.2012.08.003
http://orange.biolab.si/
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Table 5
The results of applying different machine learning techniques before and after knowledge elicitation process.

ABCN2 NB DT SVM RF LR

CA
Before 0.82 ± 0.09 0.82 ± 0.13 0.60 ± 0.15 0.71 ± 0.09 0.76 ± 0.07 0.76 ± 0.09
After 0.91 ± 0.09 0.88 ± 0.09 0.64 ± 0.16 0.78 ± 0.09 0.78 ± 0.11 0.78 ± 0.09

AUC
Before 0.95 ± 0.06 0.98 ± 0.02 0.77 ± 0.15 0.92 ± 0.06 0.93 ± 0.04 0.89 ± 0.09
After  0.96 ± 0.08 0.98 ± 0.03 0.79 ± 0.16 0.94 ± 0.06 0.93 ± 0.06 0.91 ± 0.07

ET
Spec.

Before 0.90 0.85 0.46 0.77 0.59 0.90
After  0.97 0.87 0.46 0.77 0.62 0.82

Sens.
Before 0.86 0.93 0.89 0.75 1.00 0.82
After 0.93 1.00 0.89 0.86 1.00 0.75

PT
Spec.

Before 0.87  0.95 0.97 0.82 1.00 0.82
After  0.89 0.97 0.97 0.95 1.00 0.92

Sens.
Before 0.86 0.83 0.41 0.79 0.72 0.83
After  0.97 0.86 0.48 0.83 0.72 0.86

Spec.
Before  0.95 0.93 0.91 0.93 1.00 0.91
After  0.98 0.96 0.95 0.93 1.00 0.91

0.30 0.30 0.20 0.40
0.30 0.40 0.30 0.60
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Table 6
Rules in the final model.

Rule number Rule

1
IF Bradykinesia = false
THEN class = EMT

2
IF Qualitative.spiral = essential
THEN class = EMT

3
IF Harmonics = true
THEN class = EMT

4
IF Spiro.Parkinsonian.only = false
AND Postural.tremor.up.left > 0
THEN class = EMT

5
IF History = positive
AND Bare.right.freq.range > 5
THEN class = EMT

6
IF Qualitative.spiral = Parkinsonian
THEN class = PMT

7
IF Bradykinesia = true
AND Rigidity.up = true
THEN class = PMT

8
IF Bare.right.speed.time = Parkinsonian
AND Tremor.neck ≤ 0
THEN class = PMT

9

IF Rigidity.up = true
AND Harmonics = false
AND Tremor.start = right side
THEN class = PMT

10

IF Bradykinesia = true
AND Rigidity.up = true
AND Resting.tremor.up = true
THEN class = PMT

11

IF Resting.tremor.up = true
AND Harmonics = false
AND Spiro.Essential.only = false
AND Sim.tremor.start = false
THEN class = PMT

12

IF Bradykinesia = true
AND Diff.age.tremor.duration ≤ 60 years
AND Harmonics = false
AND Sim.tremor.start = false
THEN class = PMT

13
IF Postural.tremor.up = true
AND Bradykinesia = false
MT
Sens.

Before 0.60 0.50 

After  0.70 0.60 

earning techniques: learning with fixed 47 examples and nine folds
f the remaining 67 cases, and testing on the remaining fold.

The initial (before elicitation) classification accuracy for ABCN2
s 0.82, which is comparable to CA of NB (0.82). This result is further
upported with high AUC score of 0.95. Specificity and sensitivity
or each class (ET, PT and MT)  are above 0.80, except for MT,  which
as sensitivity 0.60.

The CA of the final ABCN2 model is 0.91. The AUC has slightly
ncreased to 0.96 and similar applies to specificity and sensitivity.

To compare ABCN2 with the other methods we tested for
tatistical significance (at the 0.05 level) of the difference in
A (independent sample t-test) and the difference in AUC
Mann–Whitney–Wilcoxon rank-sum test) for the results after the
nowledge elicitation process. There was no significant difference
n AUC, except for decision trees. There was, however, significant
ifference in CA between ABCN2 and all the methods, except NB.
n the basis of this, we believe that ABNC2 performs at least on par
ith the best competing method in diagnostic accuracy.

We  also measured the net time investment of the domain expert.
t was slightly more than 20 h. The knowledge engineers spent
pproximately 150 h total.

.2. Qualitative comparison of the initial and the final model

There were 13 rules at the end of the knowledge elicitation
rocess. The final model is given in Table 6. Each of the rules
as evaluated independently by two neurologists (other than our

xpert in the knowledge elicitation process). They found all the
ules to correctly indicate the predicted class. In the sequel, we will
resent the experts’ explanations of three of these rules.

Nine rules contain attributes dealing with spirography tests, and
hree of those are based exclusively on spirography. The following
ule is one of them:
F Harmonics = true THEN class = EMT;

he rule states that if there are harmonic frequencies in the tremor
requency spectra, then the tremor is essential. It is known that the
ppearance of harmonic frequencies is very specific for ET.

The following rule in the final model is based solely on the
ttributes of clinical examination:

F Bradykinesia = true
AND Rigidity.up = true
Please cite this article in press as: Groznik V, et al. Elicitation of neurological knowledge with argument-based machine learning. Artif Intell Med
(2012), http://dx.doi.org/10.1016/j.artmed.2012.08.003

AND Resting.tremor.up = true
HEN class = PMT;

his says that if a patient has a resting tremor, bradykinesia,
nd rigidity, the tremor is Parkinsonian. This rule, namely the

THEN class = EMT

dx.doi.org/10.1016/j.artmed.2012.08.003
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Table 7
Rules in the initial model.

Rule number Rule

1
IF Qualitative.spiral = essential
THEN class = EMT

2
IF Bare.right.speed.time = essential
THEN class = EMT

3
IF Bradykinesia.right ≤ 0
THEN class = EMT

4
IF Rigidity.up.right ≤ 0
AND Bradykinesia.left ≤ 1
THEN class = EMT

5

IF Rigidity.up.right ≤ 1
AND Resting.tremor.up.left ≤ 2
AND Postural.tremor.up.left > 0
AND Disease.duration ≤ 9 years
THEN class = EMT

6
IF Bare.right.speed.time = Parkinsonian
AND Disease.duration ≤ 12 years
THEN class = PMT

7
IF Rigidity.up.right > 0
AND Age ≤ 83 years
THEN class = PMT

8
IF Rigidity.up.right > 0
AND Disease.duration ≤ 12 years
THEN class = PMT

IF Bradykinesia.right > 0
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Table 8
The confusion matrix for the final model.

True class Predicted class

ET MT  PT

ET 26 1 1

the other machine learning methods used in the comparison. The
performance of ABML in terms of CA and AUC is at least com-
parable to the performance of the other state-of-the-art methods
involved in the comparison. However, in our view the main result

Table 9
The confusion matrix for the initial model.

True class Predicted class

ET MT  PT
9 AND Age ≤ 74 years
THEN class = PMT

ombination of a resting tremor, bradykinesia and rigidity actually
linically defines PT.

Finally, we present a rule that successfully combines the
nowledge from spirography and clinical examination:

F Resting.tremor.up = true
AND Harmonics = false
AND spiro.Essential.only = false
AND sim.tremor.start = false

HEN class = PMT;

he rule defines an indication of PT by the presence of resting
remor, and the lack of harmonic frequencies in the tremor fre-
uency spectra, while not all spirography data are essential, and

 non-bilateral tremor start occurred. All this was found to be in
ccordance with the knowledge of the experts.

In the initial model, before the beginning of the knowledge elic-
tation process, there were 9 rules (see Table 7). Five of these rules
sed the duration of the disease or age at disease onset. However,
oth of these attributes are not very informative according to the
xpert. Both disorders can start at any age. While ET typically occurs
arlier, several patients with ET tend to visit a neurologist only
any years after the occurrence of the disease, and therefore their

ge at onset and duration of the disease are sometimes not recorded
roperly.

In contrast to the final model, several rules in the initial model
ere found to be senseless from the medical point of view. The
ext two examples illustrate this. Let us take a closer look at the

ollowing rule in the initial model:

F Rigidity.up.right >0
AND Age ≤83 years

HEN class = PMT;
Please cite this article in press as: Groznik V, et al. Elicitation of neurologica
(2012), http://dx.doi.org/10.1016/j.artmed.2012.08.003

he first part states correctly that if the rigidity is greater in the
ight upper extremity, this is a sign of PT. However, according
o the expert the side (left or right) does not play any particular
MT  0 7 3
PT 1 0 28

role for differentiating between ET and PT. The second condition is
incorrect. There is no upper limit for the age at disease onset for
either PT or ET. Here is another rule in the initial model:

IF Rigidity.up.right ≤1
AND Resting.tremor.up.left ≤2
AND Postural.tremor.up.left >0
AND Disease.duration ≤9 years

THEN class = EMT;

According to the expert, a positive value of Rigidity.up.right in gen-
eral speaks in favor of PT. Similarly, it is commonly accepted that a
positive value of Resting.tremor.up.left also speaks in favor of PT.
However, the above rule obviously does not distinguish between
the cases in which the values of these two attributes are positive
or not. Moreover, as we explained above, ET typically occurs earlier
than PT, therefore a symbol ≥ instead of ≤ would be more logical,
if any.

7.3. Misclassification analysis

Using the rules of our final model, 6 out of 67 cases in the test
data set were misclassified (see Table 8). We  asked our domain
expert to examine the misclassified cases and the rules responsible
for their classification.

After precise evaluation, the expert actually agreed with two of
the computer’s classifications as the neurologist overlooked some
of the details at the time of diagnosis. Therefore the class of these
two cases should actually be modified.

Moreover, the expert changed the class of another case. In this
case he did not agree with the computer’s evaluation, but the rules
nevertheless helped the expert to spot the earlier mistake.

The domain expert was  also asked to examine 12 misclassi-
fied cases produced by the rules of the initial model (see Table 9).
Although the expert agreed with two  of the computer’s classifica-
tions and the class was changed on two more occasions after careful
examination, three misclassified cases of the worst type remained:
PT was  wrongly classified as ET twice and ET was  wrongly classified
as PT once.

8. Discussion

The evaluation suggests that the ABML knowledge elicitation
process resulted in improved diagnostic accuracy. The classifica-
tion is better after the elicitation process both in ABML and in
l knowledge with argument-based machine learning. Artif Intell Med

ET 24 2 2
MT  1 6 3
PT 3  1 25

dx.doi.org/10.1016/j.artmed.2012.08.003
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f ABML knowledge elicitation is the comprehensibility and the
edical meaningfulness of the obtained knowledge which do not

ome at the cost of diagnostic accuracy. The comparison of the com-
rehensibility between the initial and the final set of rules clearly
emonstrates the effect of knowledge elicitation.

We  believe comprehensibility is the crucial aspect that makes
he final set of rules appropriate for use in a decision support sys-
em. It is important for the explanation supporting the suggested
ecisions (diagnoses), especially so in the medical domains where
reatment is based on diagnosis. Apart from boosting confidence
n the suggested diagnosis, well-formulated explanations can help
he doctors spot their own potential mistakes, or prompt them to
ethink the diagnosis. As such, the DSS can really act as a second
pinion, especially for the harder cases.

Another benefit of comprehensibility is that a DSS can easily
e turned into a valuable teaching tool. For this it is equally if not
ven more important that the explanations are sensible and correct.
he evaluation of our models by the neurologists clearly confirms
he benefit of ABML in this respect; while initial knowledge was
ardly comprehensible and it was sometimes even illogical from
he medical point of view (usually an artifact of chance), the final
et of rules was much more textbook like.

The analysis of the confusion matrices for the initial and final
odels does not suggest a significant decrease in the severity of

rrors made. As all the misdiagnoses are not equally harmful, cost-
ensitive learning to tune the DSS is one obvious improvement to
hink of in the future.

A further look at the final set of rules reveals another inter-
sting result. Of the 13 rules, nine contain attributes dealing with
pirography tests, and of those nine, three are based exclusively
n spirography. It is important to note that during the knowledge
licitation there was no special incentive to use specifically spiro-
raphic data. This suggests that spirography is very useful for the
ask at hand. The three rules also work very well on eight patients
hat had no clinical data.

This warrants further work on spirography, perhaps to use as an
arly screening method, even remotely on gadgets like the iPad or
mart phones.

. Conclusions and further work

The paper detailed some aspects of building a decision sup-
ort system for diagnosing and differentiating between three types
f tremors. Our DSS also takes into account the information from
pirography which was not used in previous work on this problem.
ccording to our results, spirography provides valuable diagnos-

ic information. After carrying out the ABML refinement loop, the
ccuracy of the system improved over the initial model on our test
et as well as the specificity and sensitivity for each class. There
as also been a slight decrease in severity of misdiagnoses. As
ew patients will constantly be enrolled into the study we will
e able to precisely quantify the accuracy of the system in the

ong run.
We  have also measured the net time involvement of the expert

n building a knowledge base for the system. We  believe ABML saves
 significant amount of expert’s time, and the expert agreed that the
rocess itself felt very natural and stimulating. However, it is very
ifficult to make a fair comparison with other methods, and we
esolved to just stating the net times measured.

As already mentioned, our long-term goal is to build a DSS able
o act as a second opinion, and a valuable teaching tool. To this end,
Please cite this article in press as: Groznik V, et al. Elicitation of neurologica
(2012), http://dx.doi.org/10.1016/j.artmed.2012.08.003

he obvious future work is to redo the whole learning process on
 much larger scale, taking into account all we  learned from this
ilot project. The plan is also to extend the system to other types
f tremors.

[

[
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The other major topic for further work is to extensively evalu-
ate and validate the system. We  plan to enroll a large number of
patients into the study, where the patients will routinely undergo
the DatSCAN examination (also for other purposes than our study).

Spirography was  revealed to have real potential for tremor
diagnosis, in conjunction with clinical data, but also as a stand-
alone early screening method. This possibility should also be
investigated.
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