
Goal-Oriented Conceptualization
of Procedural Knowledge

Martin Možina, Matej Guid, Aleksander Sadikov, Vida Groznik, Ivan Bratko

Faculty of Computer and Information Science, University of Ljubljana, Slovenia
{martin.mozina,matej.guid,aleksander.sadikov,vida.groznik,ivan.bratko}

@fri.uni-lj.si

Abstract. Conceptualizing procedural knowledge is one of the most
challenging tasks of building systems for intelligent tutoring. We present
an algorithm that enables teachers to accomplish this task semi auto-
matically. We used the algorithm on a difficult king, bishop, and knight
versus the lone king (KBNK) chess endgame, and obtained concepts that
could serve as textbook instructions. A pilot experiment with students
and a separate evaluation of the instructions by experienced chess train-
ers were deemed very positive.

Keywords: domain conceptualization, procedural knowledge, goal-oriented rule
learning, argument-based machine learning, chess

1 Introduction

Domain conceptualization lies at the very core of building an intelligent tutoring
system (ITS) [7],[10]. This involves the structuring of the domain and creating
a vocabulary or ontology of key concepts. Domain conceptualization consists of
declarative knowledge and procedural knowledge, which generally speaking is
the knowledge exercised in the performance at some task. Procedural knowledge
is usually implicit and not easily articulated by the individual. Due to its tacit
nature this kind of knowledge is often very hard to conceptualize.

In this paper, we will consider symbolic problem solving domains where prob-
lem solving is based on reasoning with symbolic descriptions (like in physics,
mathematics, or games like chess). A particular domain is defined with a ba-
sic domain theory (e.g., the rules of chess) and a solution to be achieved (e.g.,
checkmate the opponent in chess). The task is to find a sequence of steps that
bring us from the starting state of the problem to the goal state.

The basic domain theory (or basic declarative knowledge of the domain) is
usually simple and easy to remember. It is, in principle, sufficient for solving
problems (e.g., knowing rules of chess could in theory enable optimal play).
However, finding a solution using only declarative knowledge would require far
too extensive searching for a human. A human student is incapable of searching
very deeply, therefore we need to teach him also the procedural knowledge – how
to solve problems. The “complete” procedural knowledge would be a function



2

mapping from each problem state to a corresponding action that leads to the
solution of the problem. In chess, such complete knowledge (called “tablebases”)
is computed for some endgames. Tablebases effectively specify best moves for
all possible positions. They logically follow from the rules of the game and can
be viewed as a compilation of the rules into an extensive form. Tablebases can
be used easily because they only require trivial amount of search. But now the
problem is the space complexity – it is impossible for humans to memorize such
tablebases that typically contain millions of positions.

There is a way, however, that enables humans to solve problems in such chess
endgames quite comfortably. The key is that humans use some intermediate rep-
resentation of the problem that lies between the rules of the game (or the corre-
sponding tablebases) and solutions. We call such an intermediate representation
a “conceptualized domain.” Powerful conceptualizations are sufficiently “small”
so they can be memorized by a human, and they contain concepts that enable
fast derivation of solutions. Such a domain conceptualization enables effective
reasoning about problems and solutions [8].

In this paper, we propose a goal-oriented conceptualization of domains and
explore how to semi-automatically construct such a conceptualization that can
be effectively used in teaching problem-solving. To this end, we used argument-
based machine learning (ABML) [6], an approach that combines learning from
examples with learning from domain knowledge. Such a combination can be
particularly useful in the problem of domain conceptualization, as it is consistent
with data (accurate) and at the same time consistent with expert’s knowledge
(understandable) [4]. A similar idea, however with a different goal, was explored
in a system called SimStudent [2], where learning from examples and learning
by tutored problem solving was interweaved. Another interesting and somewhat
similar work comes from Tecuci et al. [9] who developed a series of systems
called Disciple that combine different types of learning, such as learning from
explanations provided by users or by generalizing learning examples.

2 Goal-Oriented Rules

A goal-oriented rule has the following structure:

IF preconditions THEN goal (depth)

The rule’s preconditions and goal are expressed in terms of attributes used for
describing states. The preconditions is a conjunction of simple conditions speci-
fying the required value of an attribute. For example, preconditions could contain
kdist = 3 (kdist being distance between kings in chess), or a threshold on an
attribute value, e.g., kdist > 3. Similarly, a goal is a conjunction of subgoals,
where a subgoal can specify the desired value of an attribute (e.g., kdist = 3) or
any of the four possible qualitative changes of an attribute given the initial value:
decrease, increase, not decrease, not increase or its optimization: minimize, max-
imize; e.g., a subgoal can be “decrease kdist” (decrease distance between kings).
The depth property of a rule specifies the maximum allowed number of steps in



3

Algorithm 1 Pseudo code of the goal-oriented rule learning method.

GOAL-ORIENTED RULE LEARNING (examples ES, depth)
let allRules be an empty list
while ES is not empty do

let seedExample be FindBestSeed(ES, ruleList)
let goals be DiscoverGoals(ES, seedExample, ruleList, depth)
if goals is empty then

remove seedExample from ES and return to the beginning of while sentence
end if
let rule be LearnRule(ES, goals, ruleList)
add rule to allRules
remove examples from ES covered by rule

end while
return allRules

achieving the goal. It corresponds to the level of conceptualization, where higher
depths lead to simpler rules with less conditions and less subgoals, however, these
goals are more difficult to solve, because they require more search.

The complete proposed conceptualization of procedural knowledge is a de-
cision list of ordered goal-oriented rules. In an ordered set of rules, the first
rule that “triggers” is applied. Note the difference between goal-oriented rules
and classical if-then rules. An if-then rule triggers for a particular state if the
preconditions are true, while a goal-based rule triggers when the preconditions
are true and the goal is achievable. For example, consider a rule: IF edist > 1
THEN decrease kdist. The correct interpretation of this rule is: “if black king’s
distance from the edge is larger than 1 and a decrease in distance between kings
is possible, then reach this goal: decrease the distance between the kings.”

If a goal is achievable, we would like to know how good it is in a given
state. We evaluate the goal by its worst possible realization in terms of the
distance-to-solution (e.g., distance-to-mate in chess). Formally, a goal’s qual-
ity q(g, s) in state s is defined as the difference between starting distance-
to-solution and distance-to-solution after the worst realization of the goal g:
q(g, s) = dts(sworst)−dts(s). We say that a goal is good for a state s if its worst
realization reduces the distance to solution, i.e., if q(g, s) < 0; otherwise the goal
is bad.

The quality of a rule R is directly related to the quality of its goal on states
covered by the rule. Let p be the number of covered examples where the goal
is good and n number of all covered examples. Then, the quality is computed
using the Laplacian rule of succession: q(R) = (p+ 1)/(n+ 2).

3 Goal-Oriented Rule Learning Algorithm

The task of learning goal-oriented rules is stated as: given a set of problem
solving states each labeled with a distance-to-solution, learn an ordered set of
goal-oriented rules. As these states act as learning examples, we will use this
term in the description of the algorithm. As mentioned above, each learning
example is described with a set of attributes.



4

The pseudo code of our goal-oriented rule learning method is shown in Al-
gorithm 1. It accepts two parameters; ES are the learning examples and depth
is the maximum allowed search depth for achieving goals.

The learning loop starts by selecting a seed example, which is used in the fol-
lowing calls to procedures DiscoverGoals and LearnRule. The DiscoverGoals
procedure finds good goals for the seed example and then LearnRule induces a
rule covering this example. The idea of seed examples and learning rules from
them was adopted from the AQ series of rule-learners developed by Michalski[3],
and is especially useful here, since discovering a goal is a time consuming step.
A learned rule is afterwards added to the list of all rules allRules and all exam-
ples covered by this rule are removed from the learning examples. The loop is
stopped when all learning examples have been covered.

The FindBestSeed procedure selects as the seed example the one with the
lowest distance-to-solution. TheDiscoverGoals procedure searches for best goals
in a given example. It starts with an empty goal and iteratively adds subgoals (se-
lecting from all possible subgoals, see section 2) until we find a good goal. If there
are several good goals having the same number of subgoals, then the method re-
turns all good goals. The LearnRule procedure creates for each provided goal a
data set containing all examples from ES, where this goal is achievable. Each
example in the new data set is labeled as either a good goal or as a bad goal.
Afterwards, LearnRule procedure learns a single rule from each data set and
selects the best among them. We use the CN2 algorithm to learn a rule.

We extended the above algorithm with the capability to use arguments as
in argument-based machine learning (ABML)[6]. Arguments are provided by an
expert to explain single learning examples – we call such examples argumented
examples. The task in ABML is to find a hypothesis that is consistent with
learning examples and arguments. In goal-oriented rule learning, an argument
has the following structure: “argGoal because argConditions,” where an expert
expresses his or her opinion that the goal argGoal is good in the selected state,
because the conditions argConditions hold.

We developed an iterative loop that asks the expert to explain only critical
examples, i.e., examples not covered by any sufficiently good rules. Such loop
significantly decreased the required effort of the expert; he needed to explain
only a few examples instead of all. Due to space limitations, we only presented
an overview of the ABML extension (see [1] and [5] for more details).

4 Evaluation

We used our algorithm for the conceptualization of procedural knowledge re-
quired to deliver checkmate in the KBNK chess endgame. KBNK (king, bishop,
and knight vs. a lone king) is regarded as the most difficult of the elementary
chess endgames. The stronger side can always checkmate the opponent, but even
optimal play may take as many as 33 moves. There are many recorded cases
when strong players, including grandmasters, failed to win this endgame. In an
interactive procedure between a chess teacher (a FIDE master of chess) and the



5

computer, we derived instructions in the form of goals for delivering checkmate
from any given KBNK position (see [1] for details). The result of this procedure
was an ordered set of eleven rules.

The rules were used to compile teaching materials for playing KBNK: text-
book instructions, supplemented with five example games.1 They were presented
to three chess teachers (among them a selector of Slovenian women’s squad and a
selector of Slovenian youth squad) to evaluate their appropriateness for teaching
chess-players. They all agreed on the usefulness of the presented concepts and
found the teaching materials suitable for educational purposes. Among the rea-
sons to support this assessment was that the instructions “clearly demonstrate
the intermediate subgoals of delivering checkmate.” [1]

We further assessed the teaching materials with the following pilot exper-
iment with three students – chess beginners of slightly different levels – who
played several KBNK games against a computer. The computer was defending
“optimally,” i.e., randomly choosing among moves with the longest distance to
mate (using chess tablebases). The time limit was 10 minutes per game. Each
game started from a different starting position, all mate-in-30-moves or more.
The moves and times spent for each move were recorded automatically.

At the beginning of the experiment, each student played three games against
the computer, and they always failed to deliver checkmate. They clearly lacked
procedural knowledge for successfully delivering checkmate in this endgame be-
fore seeing the teaching materials.

Next, the students were presented with the teaching materials. They were
reading the instructions and observing the example games until they felt they
are ready to challenge the computer once again. None of them spent more than
30 minutes at this second stage.

In the final stage of the experiment, the students were again trying to check-
mate the optimally defending computer. The textbook instructions and example
games were not accessible to the students during the games. Only if a game
ended in a draw, the student was again granted the access to the teaching ma-
terials for up to ten minutes before starting a new game. While the first student
(a slightly stronger chess player than the other two) successfully checkmated in
the second game already, the other two students checkmated in games 5 and
6, respectively. Once they achieved the win the students had no problems at
all achieving it again, even with the white bishop being placed on the opposite
square color than in all previous games.

Although the goal of the conceptualized procedural knowledge included in
the textbook instructions is not to teach students how to play “optimally,” but
merely to enable them to achieve a step-by-step progress towards delivering
checkmate, it is particularly interesting that the second student in his third
game of the final stage of the experiment played 22(!) optimal moves in a row
– an achievement that a chess grandmaster could be proud of. Moreover, it
happened in less than an hour after he was first given access to the textbook
instructions and example games. This result would be very hard or even impos-

1 The teaching materials are available at http://www.ailab.si/matej/KBNK.



6

sible to achieve without an effective way of memorizing particular concepts of
procedural knowledge required in order to master this difficult endgame.

5 Conclusions

We presented a novel algorithm for semi-automated conceptualization of proce-
dural knowledge based on goal-oriented rules in symbolic domains. We applied
the algorithm to the challenging KBNK chess endgame, and carried out a pilot
experiment to evaluate whether the obtained concepts (instructions) could serve
as a teaching tool. Somewhat surprisingly, even the beginner-level chess players
were able to quickly grasp the concepts, and learn to deliver checkmate. A sepa-
rate, subjective evaluation of the instructions by experienced chess trainers was
also positive.

A more rigorous evaluation is an obvious task for further work. Apart from
other domains, it should be evaluated whether the derived concepts could serve
as the knowledge base of an ITS. To this end we plan to build such a system,
and conduct an experiment on a much larger number of students.

References

1. Guid, M., Možina, M., Sadikov, A., Bratko, I.: Deriving concepts and strategies
from chess tablebases. In: ACG. pp. 195–207 (2009)

2. Matsuda, N., Keiser, V., Raizada, R., Tu, A., Stylianides, G., Cohen, W.,
Koedinger, K.: Learning by teaching simstudent: Technical accomplishments and
an initial use with students. In: Aleven, V., Kay, J., Mostow, J. (eds.) Intelli-
gent Tutoring Systems, pp. 317–326. Lecture Notes in Computer Science, Springer
Berlin / Heidelberg (2010)

3. Michalski, R.S.: A theory and methodology of inductive learning. Artificial Intel-
ligence 20(2), 111–161 (1983)

4. Možina, M., Guid, M., Krivec, J., Sadikov, A., Bratko, I.: Fighting knowledge
acquisition bottleneck with argument based machine learning. In: Patras, G. (ed.)
Proceedings of 18th European Conference on Artificial Intelligence (ECAI 2008).
pp. 234–238. IOS Press, Patras, Greece (2008)

5. Možina, M., Guid, M., Sadikov, A., Groznik, V., Krivec, J., Bratko, I.: Concep-
tualizing procedural knowledge targeted at students with different skill levels,
http://www.ailab.si/martin/abml/gorules.pdf, 2010, unpublished

6. Možina, M., Žabkar, J., Bratko, I.: Argument based machine learning. Artificial
Intelligence 171(10/15), 922–937 (2007)

7. Murray, T.: Authoring intelligent tutoring systems: An analysis of the state of
the art. International Journal of Artificial Intelligence in Education (IJAIED) 10,
98–129 (1999)

8. Tadepalli, P.: Learning to solve problems from exercises. Computational Intelli-
gence 24(4), 257–291 (2008)

9. Tecuci, G., Boicu, M., Boicu, C., Marcu, D., Stanescu, B., Barbulescu, M.: The
disciple-RKF learning and reasoning agent. Computational Intelligence 21(4), 462–
479 (2005)

10. Woolf, B.P.: Building Intelligent Interactive Tutors: Student-centered strategies for
revolutionizing e-learning. Elsevier & Morgan Kaufmann, Burlington, MA (2008)


