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Abstract. Guid and Bratko carried out a computer analysis of games played by 
World Chess Champions as an attempt at an objective assessment of chess play-
ing strength of chess players of different times. Chess program CRAFTY was 
used in the analysis. Given that CRAFTY’s official chess rating is lower than the 
rating of many of the players analysed, the question arises to what degree that 
analysis could be trusted. In this paper we investigate this question and other 
aspects of the trustworthiness of those results. Our study shows that it is not 
very likely that the ranking of at least the two highest-ranked players would 
change if (1) a stronger chess program was used, or (2) if the program would 
search deeper, or (3) larger sets of positions were available for the analysis. 

1 Introduction 

The emergence of high-quality chess programs provided an opportunity of a more 
objective comparison between chess players of different eras who never had a chance 
to meet across the board. Recently Guid and Bratko [4] published an extensive 
computer analysis of World Chess Champions, aiming at such a comparison. It was 
based on the evaluation of the games played by the World Chess Champions in their 
championship matches. The idea was to determine the chess players' quality of play
(regardless of the game score), which was evaluated with the help of computer 
analyses of individual moves made by each player. The winner according to the main 
criterion, where average deviations between evaluations of played moves and best-
evaluated moves according to the computer were measured, was Jose Raul Capab-
lanca, the 3rd World Champion, which to many came as a surprise (although Capab-
lanca is widely accepted as an extremely talented and a very accurate player). 

A version of that article was republished by a popular chess website, 
ChessBase.com [3], and various discussions took place at different blogs and forums 
across the internet, while  the same website soon published some interesting responses 
by various readers from all over the world, including some by scientists [2]. A 
frequent comment by the readers could be summarised as: “A very interesting study, 
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but it has a flaw in that program CRAFTY, whose rating is only about 2620, was used 
to analyse the performance of players stronger than this. For this reason the results 
cannot be useful”. Some readers speculated further that the program will give better 
ranking to players that have a similar strength to the program itself. In more detail, the 
reservations by the readers included three main objections to the used methodology: 

- the program used for analysis was too weak, 
- the depth of the search performed by the program was too shallow3, 
- the number of analysed positions was too low (at least for some players). 

In this paper we address these objections in order to determine how reliable 
CRAFTY (or any other fallible chess program) is as a tool for comparison of chess 
players, using the suggested methodology. In particular, we were interested in 
observing to what extent is the ranking of the players preserved at different depths of 
search. Our results show, possibly surprisingly (see Fig. 1), that at least for the players 
whose score differentiate enough from the others (as is the case for Capablanca and 
Kramnik on one side of the list, and Euwe and Steinitz on the other) the ranking 
remains preserved, even at very shallow search depths. 

depth best move evaluation

2 Bxd5 -1.46

3 Bxd5 -1.44

4 Bxd5 -0.75

5 Bxd5 -1.00

6 Bxd5 -0.60

7 Bxd5 -0.76

8 Rad8 -0.26

9 Bxd5 -0.48

10 Rfe8 -0.14

11 Bxd5 -0.35

12 Nc7 -0.07

Fig. 1. Botvinnik-Tal, World Chess Championship match (game 17, position after white’s 23rd

move), Moscow 1961. In the diagram position, Tal played 23…Nc7 and later won the game. 
The table on the right shows CRAFTY’s evaluations as results of different depths of search. As it 
is usual for chess programs, the evaluations vary considerably with depth. Based on this obser-
vation, a straightforward intuition suggests us that by searching to different depths, different 
rankings of the players would have been obtained. However, as we demonstrate in this paper, 
the intuition may be misguided in this case, and statistical smoothing prevails. 

It is well known for a long time that strength of computer chess programs increases 
with search depth. Already in 1982, Ken Thompson [8] compared programs that 
searched to different search depths. His results show that searching to only one ply 
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deeper results in more than 200 rating points stronger performance of the program. 
Although later it was found that the gains in the strength diminish with additional 
search, they are nevertheless significant at search depths up to 20 plies [6]. The pres-
ervation of the rankings at different search depths would therefore suggest not only 
that the same rankings would have been obtained by searching deeper, but also that 
using a stronger chess program would not affect the results significantly, since the 
expected strength of CRAFTY at higher depths (e.g. at about 20 plies) are already com-
parable with the strength of the strongest chess programs, under ordinary tournament 
conditions at which their ratings are measured (see [7] for details). 

We also studied how the scores and the rankings of the players would deviate if 
smaller subsets of positions were used for the analysis, and whether the number of 
positions available from world championship matches suffices for successful ranking 
of the World Champions. 

2 Method 

We used the same methodology as Guid and Bratko [4] did in their study. Games for 
the title of “World Chess Champion”, where the fourteen classic World Champions 
contended for or were defending the title, were selected for analysis. Each position 
occurring in these games after move 12 was iteratively searched to depths 2 to 12 ply. 
Search to depth d here means d ply search extended with quiescence search to ensure 
stable static evaluations. The program recorded best-evaluated moves and their 
backed-up evaluations for each search depth from 2 to 12 plies (Fig. 2). As in the 
original study, moves where both the move made and the move suggested by the 
computer had an evaluation outside the interval [-2, 2], were discarded and not taken 
into account in the calculations. In such clearly won positions players are tempted to 
play a simple safe move instead of a stronger, but risky one. The only difference 
between this and the original study regarding the methodology, is in that the search 
was not extended to 13 plies in the endgame. Obviously the extended search was not 
necessary for the aim of our analysis: to obtain rankings of the players at the different 
depths of search. 

The average differences between evaluations of moves that were played by the 
players and evaluations of best moves suggested by the computer were calculated for 
each player at each depth of the search. The results are presented in Fig. 3. 
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Fig. 2. In each position, we performed searches to depths from 2 to 12 plies extended with 
quiescence search to ensure stable static evaluations. Backed-up evaluations of each of these 
searches were used for analysis. 
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Fig. 3. Average scores (deviations between the evaluations of played moves and best-evaluated 
moves according to the computer) of each player at different depths of search. The players 
whose scores clearly deviate from the rest are Capablanca, Kramnik (in positive sense) and 
Euwe, Steinitz (in negative sense).4

The results clearly demonstrate that although the deviations tend to decrease with 
increasing search depth, the rankings of the players are nevertheless preserved, at least 
for the players whose scores differ enough from the others (see Fig. 4). It is particu-
larly impressive that even trivial search to depth of two or three ply does rather good 
job in terms of the ranking of the players. 
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Fig. 4. Ranking of the players at different search depths.

In order to check the reliability of the program as a tool for ranking chess players, it 
was our goal to determine: 
− the stability of the obtained rankings in different subsets of analysed positions, 
− the stability of the rankings with increasing search depth. 
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Fig. 5. Average scores of each player were computed for 1000 subsets of different sizes. The 
graph represents the results for players Fischer and Botvinnik, for subsets consisting of evalua-
tions resulting from search to depth 12. 
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For each player, 100 subsets from the original dataset were generated by randomly 
choosing 500 positions (without replacement) from their games. The number of avail-
able positions varies for different players, since they were involved in a different 
number of matches. About 600 positions only were available for Fischer, while both 
for Botvinnik and Karpov this number is higher than 5100 at each depth. The exact 
number for each player slightly varies from depth to depth, due to the constraints of 
the methodology: positions where both the move made and the move suggested by the 
computer had an evaluation outside the interval [-2, 2] had to be discarded at each 
depth. Experiments with subsets of different sizes suggest that the size of 500 already 
seems to be sufficient for reliable results (Fig. 5). 

We observed variability of scores and rankings, obtained from each subset, for each 
player and at each search depth. The results are presented in the next section. 

3 Results 

The results presented in this section were obtained on 100 subsets of the original data-
set, as described in the previous section. 
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Fig. 6. Average scores of each player at different search depths. 

Fig. 6 represents average scores of the players across all the subsets, at each search 
depth from 2 to 12. The obvious similarity to the graph in Fig. 3 confirms that the 
results obtained on the whole dataset were not coincidental. This conclusion was con-
firmed by observing average scores of the players across all depths for each subset 
separately: Capablanca had the best such score in 96% of all the subsets. 
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Average standard deviations of the scores
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Fig. 7. Average standard deviations of the scores of the players. The scale is adjusted for easier 
comparison with the graph in Fig. 6. 

The average standard deviations of the players’ scores show that they are slightly 
less variable at higher depths. Anyway, they could be considered practically constant 
at depths higher than 7 (Fig. 7). All the standard deviations are quite low, considering 
the average difference between players whose score differ significantly. 
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Fig. 8. Average rank of the players. 

Fig. 8 (similar to Fig. 4) shows that the rankings preserve for Capablanca, Kramnik, 
Euwe and Steinitz, whose scores differ significantly from the rest of the players.
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Average standard deviations of the ranks
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Fig. 9. Average standard deviations of the players’ ranks (obtained in 100 subsets). 

The average standard deviations of the players’ ranks (obtained in 100 subsets) 
only slightly increase with increasing search depth and are practically equal for most 
of the depths (Fig. 9). 
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Fig. 10. Standard deviations of the average ranks for each player across all depths. 

The graph of standard deviations of the average ranks from different depths for 
each player separately (Fig. 10) confirms that the rankings of most of the players on 
average preserve well across different depths of search. 
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4 A Simple Probabilistic Model of Ranking by Imperfect Referee 

Here we present a simple mathematical explanation of why an imperfect evaluator 
may be quite sufficient to correctly rank the candidates. The following simple model 
was designed to show the following: 

− To obtain a sensible ranking of players, it is not necessary to use a computer that is 
stronger than the players themselves. There are good chances to obtain a sensible 
ranking even using a computer that is weaker than the players. 

− The (fallible) computer will not exhibit preference for players of similar strength to 
the computer. 

Let there be three players and let us assume that it is agreed what is the best move 
in every position. Player A plays the best move in 90% of positions, player B in 80%, 
and player C in 70%. Assume that we do not know these percentages, so we use a 
computer program to estimate the players’ performance. Say the program available for 
the analysis only plays the best move in 70% of the positions. In addition to the best 
move in each position, let there be 10 other moves that are inferior to the best move, 
but the players occasionally make mistakes and play one of these moves instead of the 
best move. For simplicity we take that each of these moves is equally likely to be 
chosen by mistake by a player. Therefore player A, who plays the best move 90% of 
the time, will distribute the remaining 10% equally among these 10 moves, giving 1% 
chance to each of them. Similarly, player B will choose any of the inferior moves in 
2% of the cases, etc. We also assume that mistakes by all the players, including the 
computer, are probabilistically independent. 

In what situations will the computer, in its imperfect judgement, credit a player for 
the “best” move? There are two possibilities: 

1. The player plays the best move, and the computer also believes that this is the best 
move. 

2. The player makes an inferior move, and the computer also confuses this same infe-
rior move for the best. 

By simple probabilistic reasoning we can now work out the computer’s 
approximations of the players’ performance based on the computer’s analysis of a 
large number of positions. By using (1) we could determine that the computer will 
report the estimated percentages of correct moves as follows: player A: 63.3%, player 
B: 56.6%, and player C: 49.9%. These values are quite a bit off the true percentages, 
but they nevertheless preserve the correct ranking of the players. The example also 
illustrates that the computer did not particularly favour player C, although that player 
is of similar strength as the computer. 

P’ = P · PC + (1 – P) · (1 - PC) / N (1)

P = probability of the player making the best move 
PC = probability of the computer making the best move
P’ = computer’s estimate of player’s accuracy P

23



N = number of inferior moves in a position 

The simple example above does not exactly correspond to our method which also 
takes into account the cost of mistakes. But it helps to bring home the point that for 
sensible analysis we do not necessarily need computers stronger than human players. 

5 A More Sophisticated Mathematical Explanation 

How come the rankings of the players, as the results demonstrate, preserve rather 
well, despite the big differences in evaluations across different search depths? In the 
sequel we attempt to provide an explanation for this phenomenon. 

Suppose we have an estimator A that measures the goodness of an individual M in a 
concrete task, by assigning this individual a score (S), based on some examples. The 
estimator assigns different scores to the respective individuals and therefore has a 
variance associated: 

( )( )
2A

M
A
M

A
M S - ESEVar =

(2)

The estimator gives an approximation (SM
A) of the real score (SM) of the individual, 

which results in a bias: 

( )M
A
M

A
M  - SSEBias = (3)

The probability of an error in comparison of two individuals, M and N, using the 
estimator A, only depends on the bias and the variance. Given two different estima-
tors, A and B, if their scores are equally biased towards each individual (BiasM

A = 
BiasN

A and BiasM
B = BiasN

B) and variances of the scores of both estimators are equal 
for each respective individual (VarM

A = VarM
B and VarN

A = VarN
B), then both estima-

tors have the same probability of committing an error (Fig. 11). 
This phenomenon is commonly known in the machine-learning community and has 

been frequently used, e.g., in studies of performances of estimators for comparing 
supervised classification algorithms [1, 5]. In the sequel we analyse what happens in 
comparisons in the domain of chess when estimators based on CRAFTY at different 
search depths are used, as has been done in the present paper. 

In our study the subscript of SM
A refers to a player and the superscript to a depth of 

search. The real score SM could not be determined, but since it is commonly known 
that in chess the deeper search results in better heuristic evaluations (on average), for 
each player the average score at depth 12, obtained from all available positions of 
each respective player, served as the best possible approximation of that score. The 
biases and the variances of each player were observed at each depth up to 11, once 
again using the 100 subsets, described in Section 2. 
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Fig. 11. Although estimators A and B give different approximations of the real scores of indi-
viduals M and N (SM and SN), and A approximates the real scores more closely, since their 
scores are equally biased towards each individual (BiasM

A = BiasN
A and BiasM

B = BiasN
B) and 

variances of the scores of both estimators are equal for each respective individual (VarM
A = 

VarM
B and VarN

A = VarN
B), they are both equally suitable for comparison of M and N. 
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Fig. 12. Average biases, standard deviations of them, and standard deviations of the scores. 

The results are presented in Fig. 12. The standard deviation of the bias over all 
players is very low at each search depth, which suggests that BiasM

A is approximately 
equal for all the players M. The program did not show any particular bias at any depth 
towards Capablanca nor towards any other player. Moreover, the standard deviation is 
practically the same at all levels of search with only a slight tendency to decrease with 
increasing search depth. Standard deviations of the scores are also very low at all 
depths, from which we could assume that VarM

A = VarM
B also holds. For better visu-
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alisation we only present the mean variance, which as well shows only a slight ten-
dency to decrease with depth. To summarise, taking into account both of these facts, 
we can conclude that the probability of an error of comparisons performed by CRAFTY

at different levels of search is practically the same, and only slightly diminishes with 
increasing search depth. 

6 Conclusion 

In this paper we analysed how trustworthy are the rankings of chess champions, pro-
duced by computer analysis using the program CRAFTY [4]. In particular, our study 
was focused around frequently raised reservations expressed in readers’ feedback: (1) 
the chess program used for the analysis was too weak, (2) the depth of the search 
performed by the program was too shallow, and (3) the number of analysed positions 
was too low (at least for some players).  
      The results show that, at least for the two highest ranked and the two lowest 
ranked players, the rankings are surprisingly stable over a large interval of search 
depths, and over a large variation of sample positions. It is particularly surprising that 
even extremely shallow search of just two or three ply enable reasonable rankings. 
Indirectly, these results also suggest that using other, stronger chess programs would 
be likely to result in similar rankings of the players. 
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