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Abstract 
When dealing with cognitive architecture and behavior, 
chunks are one of the most well known and accepted 
constructs. Despite that, the nature of chunks still remains 
very elusive, especially with understanding chunks in 
procedural knowledge. Our attempt is to show the existence 
of chunks in procedural knowledge, define them, and 
describe their characteristics. With this purpose in mind, we 
use data mining techniques. We chose the game of chess as 
an experimental domain, due to its complexity, well defined 
rules, and a standardized measure of chess-players’ 
knowledge. Results could contribute to the understanding of 
human information processing and cognitive architecture. 
They could be beneficial for tutoring and student modeling, 
and may serve as a framework for knowledge-based driven 
AI agents. 
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I.  INTRODUCTION 
The cognitive sciences main questions are: How 

information is stored in memory, and how it is organized 
and retrieved when needed. In short: How information is 
processed. Most of the existing theories of human 
information processing have one concept in common - 
chunks (Chunking theory [10]; Template theory [5], ACT 
[1]). Chunks are pieces of meaningful information (stored in 
long-term memory) which enable easier learning and 
perception [9]. Although the concept of chunks is wide-
spread and accepted, the nature of chunks is far from being 
clearly defined and understood. For the purpose of 
information processing exploration in humans, chess has 
proven to be a fertile ground for ideas and techniques of 
cognitive psychology, as well as in artificial intelligence 
(AI). It provides a complex reasoning problem from a 
manageable domain with a built-in performance criterion 
(ELO rating). Richness and adaptability of the chess 
environment provides many ways of mining for useful 
knowledge using several types of various descriptive 
features (or attributes). According to previous studies [5, 
10], results obtained on a domain of chess can be 

generalized to other expert fields, thus meaning that chess 
has high external validity.  

Most of experiments and theories of the chunking 
mechanisms in general and in chess specifically refer to 
chunks in declarative knowledge, i.e., knowledge about 
facts [5, 10]. However, chess experts don’t hesitate to 
confirm that chess moves (representing procedural 
knowledge) are also connected into meaningful units, so 
called chess motives. Procedural knowledge in general is the 
knowledge exercised in the performance of some task. In 
AI, procedural knowledge is one type of knowledge that can 
be possessed by an intelligent agent. Such knowledge is 
often represented as an algorithm, a finite-state machine or a 
computer program. In contrast, an AI system based on 
declarative knowledge might just contain a map of the 
building, together with information about the basic actions 
that can be done by the robot (like moving forward, turning, 
and stopping), and leave it to a domain-independent 
planning algorithm to discover how to use those actions to 
achieve the agent's goals [9]. In contrast to declarative 
knowledge, human procedural knowledge is more implicit, 
not easily articulated by the individual, since it is typically 
tacit and therefore more difficult to measure [11]. 
Consequently, there is lack in experiments and theories 
referring to chunks in procedural knowledge. However, 
chess players (and books) show chess variations all the time, 
that is, they operate with and communicate procedural 
knowledge all the time. Nevertheless, despite such a clearly 
visible role of procedural knowledge in chess, there has 
been surprising lack of study of this type of knowledge. 

In our work, we intend to show the existence of chunks in 
chess variations (sequences of moves), which reflect the 
organization of procedural knowledge. To emphasize the 
difference with respect to well-known chunks in declarative 
knowledge, we will refer to these meaningful units in 
procedural knowledge as procedural chunks. We will try to 
extract chunks from chess games and explore the 
characteristics of obtained chunks. In order to investigate 
the nature of chunks in procedural knowledge, a 
reproduction experiment of chess variations will be 
conducted. Data will be processed with machine learning 
techniques, since they proved to be a powerful tool for 
discovering potential complex patterns [4]. 



II. METHOD 

A. Participants 
52 chess players and 50 non-chess players participated 

in the experiment. The average age of a chess player group 
was 26 years (ranging from 14-56), their average chess 
strength (measured in international “ELO” system) was 
2275 ELO points (ranging from 1600 ELO, which represent 
the beginners, up to 2670 ELO which is a rating of top 
grandmasters). 

B. Experimental procedure 
Participants were asked to reproduce two kinds of tasks: 

chess variations (chess move sequences) as an experimental 
condition and irregular variations (move sequences, where 
chess pieces don’t move by chess rules) as a controlling 
condition (control of the memory capacity without any 
knowledge). 5 chess variations and 5 irregular variations 
were presented. The beginning of the variation was in the 
middle game, in order to prevent the possibility of 
participants being previously acquainted with the opening. 
When selecting different variations, attributes that might 
influence memorizing were taken into account, e.g.: number 
of pieces on the chess board at the beginning of the 
variation, number of different piece types included in the 
variation, number of squares occupied during the variation, 
style of the game (tactical/positional/mixed), number of 
pieces at the end of the variation, etc. Time interval between 
the consecutive moves was 2 seconds, as it is assumed to be 
long enough for individual to process the information to 
long-term memory. Length of the variations was 16 moves 
(or 32 half moves, i.e., with white and black counted 
separately). All the experiments were conducted using 
specialized software designed for the purpose of this study. 
It uses classical and well-known WinBoard chessboard 
representation, and records exact times of user inputs in 
reproductions of the chess variations previously displayed 
by the program. 

Before the beginning of the experiment participants were 
given the following instructions: “You will be presented a 
middle-game chess position. You can have a look at it and 
when ready you can press the button. At this point 16 
moves-long variation will be shown to you. The time 
interval between two consecutive moves will be 2 seconds. 
Watch carefully and try to remember as many moves as 
possible. After the variation presentation is finished, you 
will be shown the beginning position. Your task will be to 
repeat the original variation as correctly as possible, while 
being careful to repeat it as fluently as possible, without 
pauses between moves.” They were warned that the time of 
their reconstruction will be measured and that the correction 
of moves is not possible. 

C. Data evaluation procedure 
Reconstructed moves were evaluated in two ways. 

Firstly, we took into consideration only moves that were 
reconstructed correctly (“correct moves”). Secondly, we 

were evaluating all the reconstructed moves, which were in 
the original variation no matter if the move-order was correct 
or not (“included moves”). 

1) Defining chunks in procedural knowledge 

When defining/extracting chunks in procedural 
knowledge, we first considered a method for defining 
chunks in declarative knowledge, developed by Chase and 
Simon [10]. It is based on the assumption that longer time 
interval during the reconstruction of a meaningful material 
(i.e., the material about which we have relevant knowledge) 
reveals the recall of a new structure/chunk from the long-
term memory. We adapted this method for reconstruction of 
each chess variation. In our case, longer time interval 
between two consecutive reconstructed moves reflects the 
recall of a new motive/chunk from the memory storage. 
“Longer time interval” was defined in the following way: 
Times of each participant were normalized; one way of 
normalization was calculating the percentage of time used 
for a certain move with regard to time spent for the whole 
reconstruction while the second way was conversion into z-
values. The quantity z represents the distance between the 
raw score and the population mean in units of the standard 
deviation. z is negative when the raw score is below the 
mean, positive when above [14]. Further on, for each move 
a median of the normalized times of all the participants who 
reconstructed the particular move was calculated. Next, for 
all the moves in one game an average value and standard 
deviation of normalized time medians was calculated. All 
the moves that exceeded the boundary of the average value 
plus one standard deviation were considered as a “long time 
interval” and as such the beginning of a new procedural 
chunk. 

Our second method for defining procedural chunks 
involved the number of reconstructions for the particular 
move, or so called collective reconstruction (an idea 
introduced by Bratko et al. [2]). In this case, we counted the 
number of participants that reconstructed a particular move. 
Big declines in the number of reconstructions (top 25%) 
indicated the beginning of a new chunk. 

The third version of chunks definition is based on 
association rules. Association rule mining finds interesting 
associations and/or correlation relationships among large 
sets of data items. They show attribute value conditions that 
occur frequently together in a given dataset [13]. In our 
case, they join together the moves that are closely connected 
with each other, i.e., many participants reconstruct them 
together. When such a unit is detected, the moves 
constructing it are eliminated from further analysis. Using 
this procedure, we divided a chess variation into a number 
of chunks, i.e., units that are closely connected among each 
other and weakly connected with other moves. 

Final chunks are defined with a comparison of all three 
above mentioned methods. 
 



2) Exploring the characteristics of the procedural 
knowledge chunks 

Our second major goal was to describe the characteristics 
of chunks in procedural knowledge. With this purpose in 
mind, we extracted many different attributes that might 
affect the reconstruction of chunks and treated them with 
machine learning (ML) techniques in order to clarify the 
nature of procedural chunks. A major focus of machine 
learning research is to automatically recognize complex 
patterns in data. The constructed knowledge is often in the 
form of readable, understandable trees, rules, and other 
representations thus enabling further study and fine tuning.  
Two examples of successful scientific and engineering ML 
tools are Weka [12] and Orange [3]. 

Data for machine learning and data mining are most 
commonly presented in attribute-class form, i.e., a “learning 
matrix”, where rows represent examples, and columns 
attributes [3].  

In our case, an example is a move of the variation, 
described with more than 100 different attributes. Table I 
lists some of them. 

TABLE I.  DESCRIPTIONS OF ATTRIBUTES (“RYBKA” STANDS FOR 
“CHESS PROGRAM RYBKA 3 AT 10-PLY SEARCH DEPTH”). 

Name Description 

MOVENO move sequent number 
MOVEVALUE evaluation of the position after move played (RYBKA) 
MOVERANK rank of the move played in the original variation (RYBKA) 

MOVEDIFF difference between the evaluation of the best move and the 
move in the variation (RYBKA) 

NODES number of nodes evaluated (RYBKA) 
ALLMOVES number of all possible moves in the position 

SIMMOVES number of moves of similar quality in the position (+/-0.50 in 
RYBKA evaluation) 

PIECETYPE moved piece type 

SQPASSED number of squares passed over by the pieces in particular 
variation 

SQOCCUPIED number of squares occupied by pieces in the variation 

ALLPIECES number of pieces in the position 
PLAYTYPE type of play (positional, tactical, mixed) 
MOVELENGTH move length (measured in squares passed by the moved piece) 

CRAFTY’S 
ATTRIBUTES CRAFTY’s evaluation function attributes (around 100 attributes) 

 
The values of these attributes were defined for each move in 
a variation. 

Class values were normalized times and number of 
reconstructions. Class values were discretized in different 
ways; most commonly into three groups (lower than M-
1SD, from M-1SD to M+1SD and above M+1SD).  

Typically, data mining involves repeated experimentation 
with data, using different methods, parameters, and data to 
find most meaningful relations.  In our case, data was 
processed on different levels: games were once treated 
unified, while other time each of the five games was treated 
separately. Furthermore, we processed (a) each move 
separately and (b) moves joined into chunks as exposed by 

our chunk defining methods. All of these different types of 
data combinations were performed for “included” and 
“correct” moves. 

III. RESULTS 

A. General findings 
   Chess players reconstruct “chess variations” significantly 
better than “illegal variations”.  This difference does not 
appear in the case of non-chess players. We considered this 
as a proof of a relevant knowledge contribution to better 
reconstruction success. This finding is similar to that of 
Simon and Chase regarding reconstructing legal vs. illegal 
chess positions [10]. 

Furthermore, it was shown that better players (players 
with higher ELO rating) have better reconstruction success 
rate of legal variations (see Figure 1). This is another 
indicator that more expert knowledge results in better 
success rate in perception and memorizing. The results are 
accordant with previous researches of Simon [10] and Gobet 
[5].  
 

 
Figure 1. Reconstruction success according to ELO in terms of the number 
of “correct” and “included” moves reconstructed. 

By further data analyses and exploration, with the help of 
clustering analysis on reconstruction success rate of 
“correct” and “included” moves, chess players were divided 
into 2 groups regarding their chess strength. Group A: 
Average ELO=2407 (SD=178, N=25); Group B: Average 
ELO=2135 (SD=179, N=27). The separation ELO point, 
which divides the two groups, was calculated on the 
following way: 
 

 
 

The ELO of 2271,41 is concidered to ba a splitting point 
between better and worse chess players. 

All the procedures and methods were separately applied 
(a) on different ELO groups and (b) for all participants 
together.  

Table II shows how many (“correct” and “included”) 
moves on average were correctly reconstructed by 
differently strong chess players (divided into the two groups 
using the before mentioned clustering analysis), and average 
times spent for the reconstruction (“correct”, “included”, 
and all reconstructed moves being treated separately). 



TABLE II.  NUMBER OF RECONSTRUCTED MOVES AND TIMES SPENT 
FOR THE RECONSTRUCTION BY GROUPS OF DIFFERENTLY STRONG CHESS 

PLAYERS (IN LEGAL VARIATIONS) 

  No. 
”Correct” 
(moves) 

No. 
”Included” 

(moves) 

Avg Time 
”Correct” 

(sec.) 

Avg Time 
“Included” 

(sec.) 

Avg Time 
(sec.) 

E
L

O
>2

27
1 M 71,46 117,50 3,07 3,34 3,48 

SD 26,93 27,62 1,45 1,20 1,29 

E
L

O
≤2

27
1 M 42,33 75,63 4,07 5,08 5,75 

SD 22,79 29,07 1,31 1,60 1,80 

 
The results clearly show that: 

1. stronger chess players have better reconstruction 
success, 

2. stronger chess players have shorter reconstruction 
times, 

3. both weaker and stronger chess players on average 
spent less time for reconstruction of correctly 
reconstructed moves (it is worth noting also that 
the times spent for “correct” moves is shorter than 
for merely “included” moves). 

First and second results are congruent with previous 
findings, stating that better relevant knowledge results not 
only in more accurate, but also in quicker responses in new 
situations [15]. The third result confirms our observations 
during the conduction of the experiments that the time spent 
for the reconstruction of a certain move appears to be a good 
indicator of the mistakes in the reconstruction process: the 
correct moves were often reconstructed quicker.  

Further general findings of information processing 
referred to description of the context influence on the 
reconstruction success. One way of finding meaningful 
relations between reconstruction success and the context 
characteristics was the application of C4.5 [12], a ML 
method used for induction of classification trees. This 
method is most commonly used when the emphasis is on 
transparency of the constructed knowledge. An example of a 
decision tree acquired is shown in Figure 2. From that tree 
we can conclude that the sequent move number in 
connection with the dispersion of the variation (number of 
squares occupied by pieces in the variation) has an influence 
on the reconstruction success. The further the sequent move 
number and the higher the dispersion, the lower is the 
reconstruction success.  

The most powerful classification trees are those with best 
classification accuracy. To estimate the accuracy of the 
trees, we used 10-fold cross-validation. The estimated 
accuracy of a classification tree corresponds to the 
probability that a new example will be correctly classified. 
In the presented tree, classification accuracy is very high. It 
should be noted, however, that the predicted classes are only  

 
Figure 2. Decision tree constructed from conditions when all the games and 
all the participants were taken into account together, moves were treated 
separately and the number of the correct moves was set as a class value; 
0=lower than M-1SD, 1=from M-1SD to M+1SD,  2=higher than M+1SD . 
The classification accuracy is 91.94%. 
 
qualitative predictions of numerical values (e.g., within one 
standard deviation from the median). 
   Similarly, we can conclude that the fewer equally good 
moves there are in a position, and fewer possible moves 
there are in a position, the shorter is time needed for the 
reconstruction of the move. Another example would be that 
reconstruction is better in tactical than in positional chess 
variations, probably due to smaller move dispersion and 
fewer equally good moves in each position. 

Our next aim is to evaluate whether moves by stronger 
chess pieces are easier to reconstruct than those by the 
weaker pieces, and if pieces closer to the participant are 
easier to reconstruct than the more distant ones as proposed 
by Grimbergen [6]. Besides, we will explore whether the 
move length (number of squares the piece passed over 
during its way from the initial to the final square) impact the 
reconstruction of the moves. 

Last but not least, we concluded that reconstruction 
success does not differ regarding gender and age 
differences. 

B. Chunk extraction 
Chunks were extracted for every chess game in the 

experiments. In Figure 3 we can see an example of an 
extracted procedural chunk. Moves 1.Rxg6 Rxh4 2.Rg8 Rg4 
3.g6 (1-5 in Fig. 3) are found to be more closely associated 
together and represent a chunk, while 3…Kb6 (6) is a move 
indicating a new chunk, which is by its context significantly 
different from the previous one. 

It is particularly interesting that all the participants that 
correctly reconstructed moves up to the diagramed position 
also correctly (and relatively quickly) reconstructed every 
single move of the extracted procedural chunk, while many 
failed to reconstruct the next move in the sequence (Kc5-
b6), also spending considerably more time immediately 
after the moves in the chunk were reconstructed. 



 
Figure 3. An example of a procedural chunk. 

C. Chunk characteristics 
   When considering procedural chunks characteristics, we 
have two main questions in mind: What influences the 
chunks length, and what influences their difficulty. 
Difficulty is defined by reconstruction success rate and 
average time spent for the reconstruction of a chunk. The 
before mentioned attributes will be taken into account. In 
this case, a class will be defined by (a) an average number 
of “correct/included” moves in a chunk, (b) time of the 
moves in a chunk, and (c) the chunk length. 

Answering these questions belongs to future work. 

IV. PRACTICAL APPLICATION AND BENEFITS 
In this paper, we presented our work that aims at the 
following three contributions to the understanding of human 
information processing and cognitive architecture:  

1. We introduced the notion of procedural chunks.  
2. We proposed methods for extraction of procedural 

chunks and identification of their characteristics.  
3. We presented some general findings about 

information processing and some initial results that 
emerged from the early phase of our research. 

In general, our findings could be applied when teaching 
procedural knowledge. The obtained results could also be 
useful as a theoretical framework when trying to develop 
knowledge-based AI agent. Furthermore, with the ever more 
extensive e-tutoring development, the results of our study 
could be used in student modeling. Levinson et al. [8] 
argued that almost no competitive chess programs use AI 
language or knowledge representation methods, since they 
are too slow for a real time, high performance applications. 
Despite of enormous progress in the power of chess 
programs, their capabilities to explain why certain moves 
are good or bad in a language understandable to humans are 
very limited. The computer chess community has done 

embarrassingly little research in the areas of intelligent 
chess tutoring and automatic annotation of chess games, 
where knowledge representation and acquisition are of 
considerable importance, and human information processing 
and cognitive architecture may prove to be important as 
well. In our specific case, the results could be beneficial in 
building a knowledge base for an automated chess tutor [7], 
a computer program which automatically annotates chess 
games in a humanlike way. It might help with suggestions 
such as when to comment, how to treat users with different 
chess strength, etc. 
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