
Influence of Search Depth on Position Evaluation

Matej Guid and Ivan Bratko

Faculty of Computer and Information Science, University of Ljubljana, Ljubljana,
Slovenia

Abstract. By using a well-known chess program and a large data set
of chess positions from real games we demonstrate empirically that with
increasing search depth backed-up evaluations of won positions tend to
increase, while backed-up evaluations of lost positions tend to decrease.
We show three implications of this phenomenon in practice and in the
theory of computer game playing. First, we show that heuristic evalu-
ations obtained by searching to different search depths are not directly
comparable. Second, we show that fewer decision changes with deeper
search are a direct consequence of this property of heuristic evaluation
functions. Third, we demonstrate that knowing this property may be
used to develop a method for detecting fortresses in chess, which is an
unsolved task in computer chess.

1 Introduction

The purpose of a heuristic evaluation function is to guide the game-tree search.
Heuristic evaluation functions have to enable a program to find a direction of play
towards a win, not only to maintain a won position. Backed-up (i.e., negamaxed
or minimaxed) heuristic values should in some way also reflect the progress
towards the end of the game, and should therefore change as the search depth
increases. Given a won position, if backed-up heuristic values remained the same
with an increasing level of search, this would just ensure that the value “win” is
maintained, without any guarantee of eventually winning.

Heuristic evaluations are supposed to reflect a goodness of a particular posi-
tion. Actually, what exactly this value means was never strictly defined. Various
authors viewed this value as a position’s “worth”, “merit”, “strength”, “qual-
ity”, or “promise” [1]. It is well known that searching deeper generally leads to
stronger play [2]. A common belief is that searching deeper leads to better ap-
proximations of the value of the root node of the search tree (after minimaxing)
to the unknown “true” value of the position at the same root node. That is, it
is typically assumed that searching deeper results in a more accurate evaluation
in terms of approaching the unknown “true” value of the root-node position.

It is generally accepted that a “perfect” heuristic evaluation function would
statically (i.e., without any search) assign the “true” value to the position in
question and that searching deeper would not affect this evaluation. Since these
“true” values are not known, it is accepted that they have to be approximated
heuristically. For example, Luštrek et al. [3] propose a model that uses real

Program Evaluation

ChessMaster 10 0.15

Crafty 19.19 0.20

Crafty 20.14 0.08

Deep Shredder 10 -0.35

Deep Shredder 11 0.00

Fritz 6 -0.19

Fritz 11 0.07

Rybka 2.2n2 -0.01

Rybka 3 -0.26

Zappa 1.1 0.13

Fig. 1. Lasker-Capablanca, St. Petersburg 1914, position after white’s 12th move. The
table on the right shows backed-up heuristic evaluations obtained by various chess
programs, when evaluating the diagrammed chess position using 12-ply search.

numbers for “both true and heuristic values.” In the proposed model, “static
heuristic values are obtained by corrupting the true values at depth d with
random errors representing the fallibility of the heuristic evaluation function.”

Chess programs usually use heuristic evaluations where the advantage of
one unit represents material advantage of one pawn (or equivalent by means of
accumulated pluses of positional features). Chess players got used to computer
evaluations and even widely accepted the centipawn as the unit of measure used
in chess as a measure of advantage, a centipawn being equal to 1/100 of a pawn.
They often use computer evaluations to express position evaluation (e.g., “+1.15
according to Houdini”), completely ignoring the information about the depth
at which the evaluation was obtained (at least as long as the search was “deep
enough”). As Fig. 1 clearly shows, different programs assign different evaluations
to a given position, even when using the same depth of search. This may lead to
the misleading impression that the programs try to approximate some unknown
“true” heuristic value of the position being evaluated.

Direction oriented play (in which the winning player strives to increase the
advantage, as opposed to advantage-preserving play) is a property of every suc-
cessful program in all typical games where heuristic search is used. Therefore
it seems reasonable to expect this property to be reflected somehow in the pro-
grams’ heuristic evaluations. In this paper, we demonstrate empirically by using
a well-known chess program that with increasing search depth backed-up eval-
uations of won positions (from the white player’s perspective; in the theoretical
sense: white wins if both sides play optimally) will on average be increasing, and
that evaluations of lost positions will on average be decreasing. More impor-
tantly, we discuss three possible impacts of this property of heuristic evaluation
functions on game playing, and point out that heuristic evaluations obtained by
searching to different search depths are not directly comparable, in contrast to
what is generally assumed both in literature and in practical applications.

We believe that there has been no study of this property of heuristic eval-
uation functions and its impacts on game playing. When giving arguments in
support of look-ahead, Pearl [4] explains the notion of visibility, which says that
since the outcome of the game is more apparent near its end, nodes at deeper
levels of the game-tree will be more accurately evaluated and choices based on
such evaluations should be more reliable. Scheucher and Kaindl [5] advocate
that a heuristic evaluation function should be multivalued to be effective and
that game-theoretic heuristic values alone would not produce desirable results.
Luštrek et al. note that multiple values make it possible to maintain a direc-
tion of play towards the final goal. Gomboc et al. [6] show that it suffices for
evaluation functions to tell only whether a certain position is better than some
other position, and not how much better. Donkers et al. [7] examine three types
of evaluation functions: predictive, probability estimating, and profitability es-
timating evaluation functions, and investigate how evaluation functions can be
compared to each other. Several authors have studied properties of heuristic eval-
uation functions, particularly with respect to the propagation of static heuristic
errors through minimaxing (see [8] for an overview). Various papers focused on
the so-called go-deep experiments [9–17], as we did in the present study. None
of the related work focused on (1) the increasing (or decreasing) backed-up eval-
uations when searching deeper and (2) the impact of this phenomenon on the
theory and practice of game playing.

2 Experiment

In order to study deep-search behavior of chess programs, particularly with re-
spect to changes of heuristic evaluations with increasing search depth, we con-
ducted go-deep experiments on a large number of chess positions.

2.1 The Experimental Settings

The chess program Rybka was used in the experiments. The program was used
to analyze more than 40,000 positions from real games in a go-deep fashion: each
position occurring in these games after move 12 was searched to a fixed depth
ranging from 2 to 12 plies. Search to depth d means d ply search extended with
quiescence search to ensure stable static evaluations.

We defined six different groups of positions based on the backed-up heuristic
evaluations obtained at the deepest search depth available, as given in Table 1.
Evaluations by computer chess programs are given by the following standard:
the more positive evaluations mean a better position for White and the more
negative evaluations mean a better position for Black, while evaluations around
zero indicate an approximately equal position. In usual terms of chess players,
the positions of Groups 1 and 6 could be labeled as positions with “decisive
advantage,” positions of Groups 2 and 5 with “large advantage,” while Groups

Table 1. The number of positions in each of the six groups of data in three data sets.
The groups were devised based on backed-up heuristic evaluation values obtained at a
search depth of 12 plies using the chess program Rybka.

Group 1 2 3 4 5 6

Evaluation (x) x < −2 −2 ≤ x < −1 −1 ≤ x < 0 0 ≤ x < 1 1 ≤ x < 2 x ≥ 2

Positions 1,263 1,469 9,808 22,644 3,152 2,133

3 and 4 consist of positions regarded as approximately equal or with a “small
advantage” at most.1

For each data set and for each group separately we observed the behavior of
the backed-up evaluations with increasing depth of search.

2.2 Experimental Results

The comparison of backed-up evaluations obtained at adjacent search depths
shows different behavior for positions of each group of our test data. The graph
in Fig. 2 clearly shows that backed-up heuristic evaluations for Groups 1 and
6, where positions are likely to be within the zones of theoretical win and loss,
on average increase with increasing search depth in positions with a decisive
advantage for the white player (i.e., won positions), and decrease with increasing
search depth in positions with a decisive advantage for the black player (i.e., lost
positions from the perspective of the white player).

We further divided the data of won positions of Group 6 into four subsets,
based on backed-up heuristic evaluation values obtained at search depth of 12.
Like before, the highest search depth served as the best available approximation
of the utility value of each analyzed position. The results are presented in Fig.
3.

The analysis of the results confirms our expectations that in won positions,
the backed-up evaluations tend to increase with depth of search, while in lost
positions searching deeper tends to produce decreasing backed-up evaluations.

We now investigate implications for the practice of game programming, of
the fact that position evaluations tend to increase with search depth.

3 Searching to Variable Depths Revisited

Having in mind the demonstrated property of heuristic evaluation functions we
could ask ourselves: are heuristic evaluations obtained by a search to different
search depths really directly comparable? Consider a minimax-based program
searching to variable search depths. Due to various types of search extensions

1 Of course, this is only an approximation: The terms “decisive advantage”, “large
advantage”, and “small advantage” are not strictly defined in the literature.

Fig. 10. The average backed-up evaluations at each depth for each subset of won positions
of Group 6, obtained with CRAFTY.

-5

-4

-3

-2

-1

0

1

2

3

4

5

2 3 4 5 6 7 8 9 10 11 12

depth

e
v
a

lu
a

ti
o

n

0 to 1 1 to 2 >2 -1 to 0 -2 to -1 <-2

Fig. 11. Backed-up evaluations depending on search depth obtained with RYBKA (compare
to Fig. 4).

into smaller, but still well represented subsets.

In Fig. 13, the chosen interval of backed-up evaluations obtained at the highest

16

Fig. 2. Average backed-up evaluations at different search depths for each group of
positions.

(searching more deeply from seemingly more promising parts of the search tree),
state-of-the-art chess programs frequently conduct a search to different depths
of search. Afterwards, the backed-up evaluations are being compared in such a
way that the depth of search at which they were obtained is completely ignored.

However, in won positions, for example, backed-up heuristic values obtained
from deeper searches should, on average, be expected to be higher due to the
increasing backed-up evaluations. According to this observation, in such posi-
tions the following holds: if two moves result in approximately equal backed-up
values, the one resulting from shallower search is more likely to lead to a better
decision. Obviously, the depth at which the backed-up evaluation was obtained
must be taken into account in order to perform relevant comparisons of backed-
up heuristic evaluation values.

This point is illustrated by an example from a real game (see the diagram in
Fig. 4). The right side of the figure shows the program’s backed-up evaluations
obtained at search depths in the range from 7 to 17 for two winning moves in
the diagrammed position: 40.a5-a6 and 40.Nc7-e6. The evaluations tend to
increase with increasing depth of search, indicating that both moves lead to a
win, assuming optimal play. The program finds the move 40.a5-a6 to be the
best move, at any search depth. However, if the search depth used for evaluating
the move 40.a5-a6 was less than 14 plies and the search for evaluating the move
40.Nc7-e6 was extended to 17 plies, Rybka would choose the inferior move.
Indeed, the move 40.Nc7-e6 would yield the black player some practical chances
of escaping into a drawn king and two knights versus king endgame. It is also

1.00

2.00

3.00

4.00

5.00

6.00

7.00

2 3 4 5 6 7 8 9 10 11 12

e
va
lu
at
io
n

depth

2.00-2.99 3.00-3.99 4.00-4.99 >=5.00

Fig. 3. The average backed-up evaluations at each depth for each subset of won posi-
tions of Group 6.

well known that exchanging pawns in won or nearly-won endgames, generally
speaking, favors the weaker side [18].

The demonstrated property of heuristic evaluation functions becomes par-
ticularly important when using the computers to analyze huge numbers of chess
moves. In [19], the games from the World Chess Championship matches were
analyzed with a chess program in an attempt to assess objectively one aspect
of the playing strength of chess players of different eras. The basic criterion for
comparison among the players was, to what extent a player’s moves deviate from
the computer’s moves. This type of computer analysis of chess games was re-
peated using the same program at different search depths [20] and using different
programs at different search depths [21].

An important question when conducting a computer analysis of chess moves
is: should the analysis be time-limit based or fixed-depth based? That is, should
the machine spend the same amount of time for each move or should it rather
perform the search to some fixed depth? The first option seems attractive, since
approximately the same processing time is devoted to each move and also makes
it possible to predict the cumulative time required for the analysis. However, it
is highly questionable precisely due to the fact that searching to variable depth
occurs in this case.

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

2 5 8 11 14 17

ev
al
u
at
io
n

depth

40.a5-a6 40.Nc7-e6

Fig. 4. Botvinnik-Smyslov, World Chess Championship match (game 16, position af-
ter black’s 39th move), Moscow 1954. White has two tempting continuations in this
winning position: 40.a5-a6, keeping the white pawns on the board, and 40.Nc7-e6, at-
tacking the black bishop. Both of them probably win, however, after 40.Nc7-e6 black
can play 40...Nc6xa5!, and now if Black manages to sacrifice the knight for White’s only
remaining passed pawn, for example, after 41.Ne6xf8 (taking the bishop) 41...Na5-c6
42.Nf8xh7?? (taking the black pawn, but this is a mistake), Black saves himself with
42...Nc6xe5! 43.Ke4xe5 Kh4xh3, sacrificing the knight for achieving a drawn KNNKP
endgame. In the game, Botvinnik played 40.a5-a6! and won five moves later. The right
side of the figure shows the program’s backed-up evaluations with increasing depth of
search for the best two moves according to the program.

4 Decision Changes with Deeper Search

In [17], factors affecting diminishing returns for searching deeper were addressed.
It was shown that in positions with a decisive advantage, the rates of the pro-
grams’ decision change with increasing search depth differ from the ones in
balanced positions. The authors demonstrated that changes of decisions of the
program that manifest themselves in go-deep experiments depend on the util-
ity values of positions that are the subject of such experiments. This type of
experiment, also used in the present study, was introduced for determining the
expectation of a new best move being discovered by searching one ply deeper, and
were conducted by several authors [9–17]. The approach is based on Newborn’s
[22] discovery that the results of self-play experiments are closely correlated with
the rate at which the best move changes from one iteration to the next. It was
demonstrated that in positions with a decisive advantage, best moves accord-
ing to the program change less frequently with increasing search depth than in
balanced positions [17].

The property of heuristic evaluation functions on which we focused in this
paper provides an explanation for this phenomenon. We observed that in posi-
tions with a decisive advantage, backed-up evaluations of better moves according
to the program on average increase more rapidly than backed-up evaluations of
less good moves. This phenomenon can be most clearly seen in Fig. 3. Since

Fig. 5. In the left side diagram the white player is to move, and has a winning positional
advantage. State-of-the-art chess programs without any exception choose the move
1.Na4xb6?? (the white knight takes the black queen), which leads to big material
advantage. However, after 1...c7xb6 (the black pawn takes the white knight) 2.h3-
h4 (otherwise Black plays 2...h5-h4 with a draw) 2...g5xh4 3.Qb2-d2 h4-h3! 4.g2xh3
h5-h4 Black’s position (see the diagram on the right side) becomes an impregnable
fortress and the win is no longer possible against adequate defence. Nevertheless, as
GM Dvoretsky indicates, in the initial position the white player has a winning plan at
disposal: 1.Qb2-d2! followed by, Ka2-b3, Na4-b2, Kb3-a4, Nb2-d3-c1-b3. By executing
this plan White can gain the a5-pawn and win the game.

the backed-up evaluations of better moves on average increase more rapidly in
positions with a decisive advantage, in such positions the differences between
backed-up evaluations of candidates for the best move according to the program
are likely to become bigger with increasing search depth. Thus the changes of
programs’ decisions with increasing search depth are less likely to occur.

5 Detecting Fortresses in Chess

In chess, the fortress is an endgame drawing technique in which the side behind
in material sets up a zone of protection that the opponent cannot penetrate
[18]. Current state-of-the-art programs typically fail to recognize fortresses and
seem to claim winning advantage in such positions, although they are not able
to actually achieve the win against adequate defence.

Detecting fortresses is an unsolved task in computer chess. The strongest
chess programs are not able to detect fortresses such as the one shown in Fig. 5.
Current state-of-the-art chess programs without an exception choose to take the
black queen with the knight (1.Na4xb6), which leads to a big material advan-
tage and to high evaluations that seemingly promise an easy win. However, after
1...c7xb6 (the black pawn takes the white knight) the backed-up evaluations,
although staying high, cease to increase in further play. In fact, black position
becomes an impregnable fortress and the win is no longer possible against ade-
quate defence.

In [23], we demonstrated that due to a lack of increasing evaluations between
successive depths that are otherwise expected in won positions, fortresses are
detectable by using heuristic search to several successive search depths. Here we
extend the original study by using a modern chess program and a far deeper
search on an extended set of positions that are regarded as fortresses.

In the following experiment, we chose 16 positions from the book Dvoretsky’s
Endgame Manual that were recognized as fortresses by the author [24]. They are
presented in Table 2 using Forsyth-Edwards (FEN) notation, which is a standard
notation for describing a particular board position of a chess game. The positions
were a subject of analysis by the program Stockfish. The program’s backed-up
evaluations of searching to depths ranging from 15 up to 40 plies were obtained.2

Our claim was the following: Backed-up evaluations in positions that could be
regarded as fortresses will not behave as it is usual for winning (losing) positions,
that is they will not increase (or decrease) with increasing depth of search. The
results of this experiment are demonstrated in Fig. 6 and they confirm this claim.
For each of the 16 positions it holds that the backed-up evaluations remain
practically the same from a certain search depth on. Similar behavior of backed-
up evaluation values were obtained using various different chess programs for
chess positions that are accepted as fortresses.

Table 2. The list of 16 chess fortresses given in Forsyth-Edwards (FEN) notation.

FEN

1 8/8/8/8/5k2/2n4p/7P/6K1 b
2 5k2/6p1/3K1pPp/3BpP1P/4P3/8/8/8 w
3 8/6kB/6P1/5K2/8/8/8/8 w
4 4K1k1/6b1/8/4n2Q/8/8/8/8 w
5 8/N1p1k3/1pPp4/1P1P1p2/3KpPp1/4P1P1/8/8 w
6 8/3k4/8/p1p2p1p/PpP2Pp1/1P3bP1/K6P/8 w
7 6r1/8/6b1/1p5k/1Pp1p1p1/2P1P1B1/1KP2P2/8 b
8 2k5/8/1p1p4/pPpPp3/2P1Pp1p/P4PbP/K2Q4/8 w
9 8/8/6k1/8/4N2p/7P/3N2K1/q7 b
10 6k1/1R6/4K1p1/7p/8/2b3P1/7P/8 w
11 4K3/5p1N/2k2PpB/6P1/8/8/b7/7q b
12 8/5pk1/5p2/3B4/5N1P/1P4P1/6K1/q7 b
13 5nQ1/4k3/3p2p1/3P1pP1/5P2/5K2/8/b7 w
14 8/4k3/1B1p4/p1pP4/PbP5/1K6/4B3/8 w
15 7r/8/8/p3p1k1/Pp1pPp2/1PpP1Pp1/2P1K1P1/8 b
16 8/B1p5/2Pp4/3Pp1k1/4P3/5PK1/3q4/8 b

Fortresses still represent the Turing test for computer chess programs, i.e.,
a test of a machine’s ability to exhibit intelligent behavior equivalent to, or
indistinguishable from, that of a human. In Fig. 7 the challenge in both diagrams
is to achieve a draw, which is possible only by the means of creating a fortress. In
each example there is theoretical draw that humans can find, but where computer
will play the wrong move and actually lose [25].

2 Stockfish 8 64-bit was used in the experiment. In the original study, the programs
Rybka 3 and Houdini 1.5a x64 searched a subset of 12 positions up to 20 plies [23].

-800

-700

-600

-500

-400

-300

-200

-100

0

100

200

300

400

500

600

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

ev
al
u
at
io
n

depth

Fig. 6. In the positions that could be regarded as fortresses, backed-up evaluations
obtained by Stockfish cease to increase (or decrease) as it is otherwise expected in
winning (losing) positions.

What is particularly difficult for modern computer chess programs in both
positions in Fig. 7 is that the only path to a draw (leading to a fortress) demands
giving up material. As a consequence, the drawing first move typically appears
as one of the least appealing options for the programs.3

Considering changes in heuristic evaluation from searching deeper would help
in fortress recognition in both above cases as follows. When it becomes clear
that the principal variation leads to a loss (i.e., when the backed-up evaluations
suggest a winning advantage for the opponent, while the absolute values of eval-
uations keep increasing), it may be beneficial to analyze all possible moves up
to some feasible search depth. If the backed-up evaluations of a certain move
remain practically the same at all levels of search from a certain search depth
on, the program should choose this move and achieve a draw by creating an
impregnable fortress.

3 The solutions to the problems given in Fig. 7 are 1.Ba4+!! Kxa4 2.b3+! Kb5 3.c4+!
Kc6 4.d5+! Kd7 5.e6+! Kxd8 6.f5! (with a draw), and 1.Rxb7!! (1.Rxf7? g3!) 1...Rf8
(1...Rxb7 2. g3! Kg5 3.Ke2 Rb6 4.Kf1!) 2.g3! Kg6 3.Rb6+! Kg7 4.Rh6!! Kxh6 5.Ke2
Kg5 6.Kf1! Rh8 7.Kg2 a3 8.Kg1! Ra8 9.Kg2 Ra4 10.Kf1! (with a draw), respectively.
The latter study was conceived by GM Miguel Illescas.

Fig. 7. White to play and draw.

6 Conclusions

In this paper, we discussed the phenomenon that from the white player’s per-
spective, in won positions backed-up heuristic values tend to increase with the
search depth. The message of this paper is that this has several implications
for the practice and theory of computer game playing. These implications are
summarized by the following three points.

1. When choosing the best move, candidate moves should be compared on the
basis of their backed-up evaluations to equal depth for all the moves. Or,
alternatively, it may be that the choice of the best move should depend on
the gain in backed-up value from searching deeper.

2. Backed-up evaluations increasing with search depth in won positions offer
an explanation for the finding in go-deep experiments that in won positions
best-move changes with increasing search depth occur less frequently. The
differences between the evaluations of won and non-won positions simply
become more visible when depth increases.

3. The failure by a chess program of not recognizing a fortress can be attributed
to the fact that in the choice of the best move, the depth of search is not
taken into account. Again, considering the gain in heuristic evaluation from
searching deeper would help in fortress recognition.

References

1. Abramson, B.: Control strategies for two-player games. ACM Computing Surveys
21 (1989) 137–161

2. Thompson, K.: Computer chess strength. In: Advances in Computer Chess 3,
Pergamon Press (1982) 55–56

3. Luštrek, M., Gams, M., Bratko, I.: Is real-valued minimax pathological? Artificial
Intelligence 170 (2006) 620–642

4. Pearl, J.: On the nature of pathology in game searching. Artificial Intelligence 20
(1983) 427–453

5. Scheucher, A., Kaindl, H.: Benefits of using multivalued functions for minimaxing.
Artificial Intelligence 99 (1998) 187–208

6. Gomboc, D., Marsland, T.A., Buro, M.: Evaluation function tuning via ordinal
correlation. In: Advances in Computer Games. IFIPAICT 135, Springer (2003)
1–18

7. Donkers, H.H.L.M., van den Herik, H.J., Uiterwijk, J.W.H.M.: Selecting evaluation
functions in opponent-model search. Theoretical Computer Science 349 (2005)
245–267

8. Nau, D.S., Luštrek, M., Parker, A., Bratko, I., Gams, M.: When is it better not
to look ahead? Artificial Intelligence 174 (2010) 1323–1338

9. Heinz, E.: DarkThought goes deep. ICCA Journal 21 (1998) 228–244
10. Heinz, E.: Modeling the “go deep” behaviour of Crafty and DarkThought. In:

Advances in Computer Chess 9, IKAT, Universiteit Maastricht (1999) 59–71
11. Heinz, E.: Self-play in computer chess revisited. In: Advances in Computer Chess

9, IKAT, Universiteit Maastricht (1999) 73–91
12. Heinz, E.: Self-play, deep search and diminishing returns. ICGA Journal 24 (2001)

75–79
13. Heinz, E.: Follow-up on self-play, deep search, and diminishing returns. ICGA

Journal 26 (2003) 75–80
14. Hyatt, R., Newborn, M.: Crafty goes deep. ICGA Journal 20 (1997) 79–86
15. Junghanns, A., Schaeffer, J.: Search versus knowledge in game-playing programs

revisited. In: Proceeings of the 15th International Joint Conference on Artificial
Intelligence, Volume 1, Morgan Kaufmann (1999) 692–697

16. Steenhuisen, J.R.: New results in deep-search behaviour. ICGA Journal 28 (2005)
203–213

17. Guid, M., Bratko, I.: Factors affecting diminishing returns for searching deeper.
ICGA Journal 30 (2007) 65–73

18. Müller, K., Pajeken, W.: How to Play Chess Endings. Gambit Publications (2008)
19. Guid, M., Bratko, I.: Computer analysis of world chess champions. ICGA Journal

29 (2006) 3–14
20. Guid, M., Perez, A., Bratko, I.: How trustworthy is Crafty’s analysis of world chess

champions? ICGA Journal 31 (2008) 131–144
21. Guid, M., Bratko, I.: Using heuristic-search based engines for estimating human

skill at chess. ICGA Journal 34 (2011) 71–81
22. Newborn, M.: A hypothesis concerning the strength of chess programs. ICCA

Journal 8 (1985) 209–215
23. Guid, M., Bratko, I.: Detecting fortresses in chess. Elektrotehniski Vestnik 79

(2012) 35
24. Dvoretsky, M.: Dvoretsky’s Endgame Manual, 2nd edition. Russell Enterprises,

Inc. (2008)
25. Friedl, F.: On human and computer intelligence in chess. http://en.chessbase.

com/post/on-human-and-computer-intelligence-in-chess (2017) [accessed 15-
May-2017].

