24
Predicting Problem Difficulty in Chess

Ivan Bratko!, Dayana Hristova?, and Matej Guid!
Y University of Ljubljana, > University of Vienna

24.1 Introduction

A question relevant to explainable Al and human-like computing is: How can we
automatically predict the difficulty of a given problem for humans? The practical
motivation for predicting task difficulty arises for example in intelligent tutoring systems
and computer games. In both cases, the difficulty of problems has to be adjusted to the
user. In general, understanding the difficulty for humans of problems that Al tries to
solve is a relevant question for human-like computing. If Al systems find problems easy
while humans find them hard, and vice versa, then this is evidence that the Al systems
are solving the problems in a different way from humans. Also, for computation to be
“human-like”, it should be easy to understand by humans. Ideally, the system should be
able to recognise when the problem or computation gets difficult for humans.

The difficulty of a problem for a human depends on the human’s expertise in the
domain of the problem, and consequently on how the human would go about solving
the problem. The automatic prediction of difficulty could therefore involve a kind
of simulation of human problem-solving, which would make prediction of difficulty
particularly hard.

In this chapter we discuss an approach to the automatic prediction of difficulty for
humans, of problems that are typically solved through informed search. Our experimen-
tal domain is the game of chess. Chess has often proved to be an excellent environment
for research in human problem-solving. One reason for this, which is important for the
present study, is the existence of the FIDE chess federation’s rating system for registered
players worldwide, and the Chess Tempo website with a large number of chess problems
with measured difficulty ratings.

In this chapter we analyse experimental data of human chess players who attempted
to solve tactical chess problems and also assess the difficulty of these problems. We carry
out an experiment with an approach to predicting the difficulty of problems for humans
automatically in this domain.
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Solving tactical problems in chess requires search among available alternative moves.
The size of the search space is typically much too large for humans to search exhaus-
tively. Good chess players therefore use pattern-based knowledge to guide their search
extremely effectively. Problem-solving thus consists of detecting chess patterns—motifs,
and the calculation of concrete chess variations trying to exploit these motifs to the
player’s advantage. What could be such motifs and how motifs are used in chess problem
solving is explained in Section 3, where concrete examples of motifs and corresponding
problem-solving are given. In our analysis we take into account players’ comments on
how they tackled individual problems.

Automated estimation of difficulty for humans in chess is hard because it requires
the understanding of how humans solve chess problems. Strong chess players use large
amount of pattern-based knowledge acquired through experience. To duplicate this vast
amount of largely tacit knowledge in the computer is a formidable task that has never
been accomplished. Therefore we are interested in alternative ways: estimating difficulty
for humans without the use of chess-specific knowledge. In an experiment with such an
approach, described in the second part of this chapter, we reduce this need for human
players’ pattern knowledge to a speculated equivalent: properties of game-tree search
deemed to be carried out by strong players. We believe that this approach is applicable
to estimating the problem difficulty in other domains where problems are solved through
expert knowledge and search.

Related research into the issue of estimating problem difficulty of specific types of
puzzles includes the following: Tower of Hanoi (Kotovsky et al., 1985), Chinese rings
(Kotovsky and Simon, 1990), 15-puzzle (Pizlo and Li, 2005), Traveling Salesperson
Problem (Dry et al, 2006), Sokoban puzzle (Jarusek and Pelanek, 2010), Sudoku
(Pelanek, 2011), puzzle games played on grids (Van Kreveld et al., 2015), mathematical
puzzles (Sekiya et al, 2019). Kegel and Haarh (2019) review techniques for proce-
dural contents generation for games, paying attention to the difficulty of generated
problems.

An early attempt at automated estimation of the difficulty of chess problems was made
in Guid and Bratko, 2006. In that paper the authors analysed the quality of chess games
played at world championship level. The positions in the analysed games were submitted
to a strong chess-playing program, and the best moves (according to the program)
were computed. For each player, the average difference per move between the value of
the move suggested by the chess program and the value of the move actually played by
the player (average loss per move) was computed. It would now be inappropriate simply
to rank the players according to their average loss per move because the players’ playing
styles were different. Some players naturally tended towards quiet, simple positions, and
others towards complex positions. In simple positions it is much easier to achieve a small
loss than in complex positions. In order to allow a fair comparison, the difficulty of the
positions had to be taken into account. An approach to automatic difficulty estimation
of a position was therefore designed, essentially based on the amount of search required
by the chess program to find the best move in the position. This made it possible to
compute average loss per move for each player if all the players were faced with positions
of equal difficulty. This approach to difficulty estimation was analysed in detail in Guid
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and Bratko, 2013. However, it was found that this approach does not produce realistic
estimates of the difficulty for humans in tactical chess problems. Therefore, in Stoiljkovikj
et al. (2015) a more suitable approach for estimating the difficulty of tactical problems
was developed, which will also be used in the experiment in the present chapter.

24.2 Experimental Data

In this study we used the data obtained in an experiment in which 12 chess players of
various chess strengths were asked to solve 12 tactical chess problems (Hristova et al.,
2014a). A chess position is said to be tactical if finding the best move in the position
requires the calculation of variations, and the solution typically leads to an obvious win
after a relatively short sequence of moves.

The chess strength of our players, measured by the FIDE chess ratings, was in the
range between 1845 and 2279 rating points. The strength of the registered chess players
is officially computed by (World Chess Federation) using the Elo rating system. This
rating system was designed by Arpad Elo (1978). This rating is calculated for each player
and updated regularly according to the tournament results of the players. The rating
range of our players, between 1845 and 2279, means that there were big differences in
chess strength between the players. The lowest end of this range corresponds to club
players, and the highest end to chess masters (to obtain the FIDE master title, the player
must reach at least 2300 points at some point in his career). Among our participants there
were actually two chess masters, one of whom also had the title of a female grandmaster.
The expected result in a match between the top ranked player in our experiment and
our lowest ranked player would be about 92% against 8% (the stronger player winning
92% of all possible points). According to the definition of the Elo rating system, the
expected outcome between two players is determined only by the difference between their
ratings, and not by the ratings themselves. For example, consider two players with ratings
2200 and 2000. The difference is 200 rating points, which determines that the expected
success rate of the higher rated player playing against the lower rated player is 76% and
the expected success rate of the lower rated player is 24%. The same success rates could
be expected if the players’ ratings were, say, 2350 and 2150.

In addition to the differences in chess strength expressed by chess ratings, other
differences between players could also be taken into account. One such factor might
be the chess school where a player was taught, or the particular instructor who trained
the player. However, in this chapter we did not explore the effects of such additional
factors.

The 12 chess problems were selected from the Chess Tempo website,! which is
intended for tactical chess training. At Chess Tempo, the problems are rated according
to their difficulty. Chess problems are rated in a similar way as the players, except that
the evidence does not come from chess games played, but from attempts by chess

I The website Chess Tempo is at www.chesstempo.com.
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players to solve problems at Chess Tempo. Thus at Chess Tempo a problem’s rating
is determined by the success of the players in solving the problem. The principle is as
follows: if a weak player has solved a problem, this is considered a strong indication that
the problem is easy. So the problem’s rating goes down. If a stronger player has solved
the problem, the rating of the problem still decreases, but not as much as with a weak
player. On the contrary, if a strong player failed to solve the problem, this is considered
a strong evidence that the problem is hard, and the rating of a problem increases. More
specifically, a problem’s rating in Chess Tempo is determined by the Glicko rating system
(Glickman, 1999), which is similar to the Elo system. Unlike Elo, the Glicko system takes
into account the time a player has been inactive. In cases of prolonged inactivity, the
player’s rating becomes uncertain. It should be noted that the ratings of players—Chess
Tempo users—are determined by the evidence of their success in solving problems, and
not by their chess-playing results. Otherwise, the meaning of ratings in Chess Tempo is
similar to the FIDE ratings of players. So a player with rating 2000 has a 50% chance
of correctly solving a problem with rating 2000. The same player has a 76% chance to
solve a problem rated 1800, and a 24% chance to solve a problem rated 2200.

In our selection of 12 chess problems we ensured a mixture of problems that largely
differ in their difficulty. The problems were randomly selected from Chess Tempo
according to their difficulty ratings. Based on their Chess Tempo ratings, our problems
can be divided into three classes of difficulty: ‘easy’ (2 problems; their average Chess
Tempo rating was 1493.9), ‘medium’ (4 problems; average rating 1878.8), and ‘hard’
(6 problems; average rating 2243.5). While the problems within the same difficulty class
have very similar difficulty rating, each of the three classes is separated from their adjacent
classes by at least 350 Chess Tempo rating points. Some problems have more than one
correct solution. To ensure correctness, all the solutions were verified by a chess-playing
program.

The experimental set-up was as follows. Chess problems, that is chess positions,
were displayed to a participating player one after the other as chess diagrams on a
monitor. For each problem, the player was asked to find a winning move, and the player’s
solution moves were recorded. The problem-solving time per position was limited to
three minutes.

While the player was solving the problem, the player’s eye movements were
tracked with an eye-tracking device, EyeLink 1000, and recorded in a database.
The processing of recorded eye movements roughly reveals on which squares of the
chessboard the participant was focussing at any time during the problem-solving process.
Observing eye movements has often been used in chess decision-making (Sheridan and
Reingold, 2017).

After the player had finished with the 12 problems, a retrospection interview was
conducted in which the player described how he or she approached the problem. From
these retrospections, one could see which motifs were considered by the player, and
roughly how the calculation of variations driven by the motifs was carried out. Finally, the
players were asked to sort the 12 problems according to the difficulty of the problems
perceived by the players. Further details of the experiment are described in (Hristova
etal,2014a, b).
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The relevant experimental data include the following. For every player and every
position we have: (1) the correctness of the solution proposed by the player, (2) the
motifs considered by the player compared to the motifs required to solve the problem,
and (3) the correctness of the calculation of variations. The motifs considered were found
through the players’ retrospections, and to some extent verified by the eye movement
data, although this verification cannot be done completely reliably.

The data concerning the correctness of the recognition of motifs and the calculation of
variations were mostly constructed manually from the submitted solutions of the players
and from their retrospections. To decide whether the player detected a complete set of
motifs needed to carry out correct calculation, we defined for each position and each
possible solution of the position, the ‘standard’ set of motifs necessary and sufficient to
find the solution. In defining the standard sets of relevant motifs, we took into account
all the motifs mentioned by all the players. In very rare cases when needed, we had to
add motifs that fully enabled correct calculation for each possible solution. In doing so,
we used our own chess expertise (two of us have chess ratings over 2300 and 2100
respectively). We verified all the solutions and corresponding chess variations by a chess
program, and we believe that it would be hard to come up with reasonable alternative
standard sets of motifs.

24.3 Analysis

24.3.1 Relations between player rating, problem rating,
and success

We first consider some correlations between success in solving a problem, a player’s
chess rating, and problem’s Chess Tempo rating. We represent the success in solving a
problem by 1, and the failure to solve by 0. The total number of data points of the form
(Rating, Success) in our experimental data was 142. For 12 problems and 12 players,
there are altogether 12*12 = 144 such pairs, however due to misunderstandings during
the experiment in two cases invalid results were obtained, so that they were excluded,
which finally results in 142 data points.

Sample correlation coefficient between problem’s Chess Tempo rating and success
was:

r (ProblemRating, Success) = -0.345 (P = 0.000027)

This is basically as expected: higher problem rating means lower chances of success.
Sample correlation between player’s chess rating and success was:

r (PlayerRating, Success) = 0.077 (P = 0.36)

This result is not statistically significant. According to this, there is almost no
correlation between player’s Elo rating and success in solving a problem, which appears
rather surprising. Success depends much more on the Chess Tempo difficulty of the
problem than on the players’ rating. One attempt at explaining this difference can be
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that the differences in Chess Tempo ratings were higher than differences between players’
ratings. The ranges were:

players’ ratings: 2279 - 1845 = 434;
problems’ ratings: 2243 - 1492 = 751.

Another, more plausible explanation is based on the observation of an important
difference between the players’ FIDE rating and Chess Tempo problem ratings. Chess
Tempo problem ratings and players’ FIDE ratings measure different things. The first
measures success of individual moves, and the second measures success over long
sequences of moves. The players’ FIDE ratings are based on the results of complete
games (won, or drawn, or lost). Winning a game is the outcome of a sequence of moves
(usually about 40 moves). The success in winning a game depends on the sum of the
correctness of all moves in the game, and not on the correctness of a single move in
the game. A 40 moves game is typically decided by one or two moves where decisive
mistakes are made, while the rest of the moves by the two players are of very similar
quality. On the other hand, to solve a (single) problem successfully in our experiment,
just a correct single first move of a tactical combination was required. This is similar
to scoring a correct solution in Chess Tempo, although, to be precise, not exactly the
same. The Chess Tempo system, to accept an answer as correct, requires from a player
a correct first move, possibly followed by one or more moves in the main variation of the
combination. The point of requiring additional moves is to verify that the player actually
saw the whole variation and indeed played the first move for the right reasons (and was
not just lucky). So, what counted as success in Chess Tempo was not exactly the same as
what counted as success in our experiment. Nevertheless, both notions of success refer to
solving a single position, which is considerably different from success in winning a game.

24.3.2 Relations between player’s rating and estimation
of difficulty

The next question of interest is how good chess players are at estimating the difficulty
of problems. We take the Chess Tempo (CT for short) difficulty ratings as the gold
standard, because they are based on observing large numbers of players’ attempts at
solving these problems, and the ratings are computed from these observations using
an accepted method. So we compare the players’ rankings of problems with the CT
rankings.

In the experiment, the players did not directly estimate the difficulty ratings of the
problems, but each player was asked to rank the 12 problems according to his or her
perceived difficulty of the problems. We used Kendall’s Tau rank correlation coefficient
as a statistical measure of agreement between rankings. Given two rankings, Kendall’s
Tau is defined as:

T=(ne—mnq)/(nc+na) 24.1)
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Here n. and ng4 are the number of concordant pairs and discordant pairs, respectively.
A pair of chess positions is concordant if their relative rankings are the same in both
rankings; that is, given two problems, the same problem precedes the other one in both
rankings. Otherwise the pair is discordant. In our data, subsets of the positions were,
according to Chess Tempo, of very similar difficulty. Such positions belong to the same
difficulty class, either ‘easy’ (C'I-rating between 1492 and 1495) or ‘medium’ (between
1875 and 1883) or ‘hard’ (between 2231 and 2275). Within the three difficulty classes,
we consider any ordering by the players to be acceptable. To account for this, we used a
variation of the Tau formula above. When determining n. and ng4, we only counted the
pairs of positions that belong to different Chess Tempo classes. In view of the distribution
of problems over the three classes (easy: 2, medium: 4, hard: 6), we have therefore only
considered 2*4 + 2*6 + 4*6 = 44 problem pairs.

In (Hristova et al, 2014a), we computed Kandall’s Tau in this way for each of
the 12 players. Then we computed sample correlation between the players’ Tau and
the players’ FIDE ratings. There was a moderate positive relationship (not statistically
significant) between Kendall’s Tau and the FIDE ratings. We can strengthen this result by
considering separately all pairs of positions of different difficulty class, and correctness of
the relative rankings of these pairs in the 12 players’ difficulty rankings. We represented
correctly ordered pairs by 1, and incorrectly by 0. This way we have 44 pairs of problems
and 12 players, which gives 12 * 44 = 528 data points. Each data point is of the form
(PlayerRating, OrderCorrect), where OrderCorrect is 1 or O as stated above. Sample
correlation coefficient for this data setis r = —0.196, which is significant (> = 0.000095).
"This result is as one would expect. It indicates that stronger players are indeed better able
to assess the difficulty of problems than weaker players, although the correlation is quite
weak, indicating that this relation is rather noisy. Overall, in all the difficulty rankings
by all the players, 72.5% of relevant pairs are concordant (a ‘relevant pair’ is a pair of
problems of different Chess Tempo difficulty class).

Now let us consider values of Tau for individual players. Tau is between —1 and 1.
Tau = 1 indicates a perfect ranking, and Tau = —1 indicates a ranking which is “as wrong
as possible’. Kendall’s Tau coefficients of the players were in the large interval between
—0.18 and 0.95 (two payers actually ordered more of the relevant pairs of positions
incorrectly than correctly). It is interesting to consider the ‘average ranking’ by all
12 players. This can be obtained by a kind of players’ voting, considering the average rank
of each problem over all the players’ rankings. The obtained ranking order of positions
was: 2,3, 1,6, 10, 7,4, 5,9, 8, 12, 11; that is, overall, position 2 was perceived as the
easiest, followed by position 3, etc., with position 11 perceived as the hardest. According
to Chess Tempo ratings, the sets of positions belonging to the three difficulty classes are
as follows:

easy: {1, 2}
medium: {3, 4, 5, 6}
hard: {7, 8, 9, 10, 11, 12}

Kendall’s Tau for the joint ranking by the players is 0.77. This can be compared with
the individual players’ Tau coefficients. The highest player’s Tau was 0.95, and the second
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highest 0.68. Average Tau over the 12 players was 0.45. This is also in agreement with
the result that overall, the players correctly ordered 72.5% of pairs of problems that were
taken into account.

The results regarding the players’ difficulty estimation require careful interpretation.
The task of the players in the experiment was stated simply as follows: rank the 12 given
problems according to their difficulty, from the easiest to the most difficult. The players
were not told that there were essentially three difficulty classes, and that there were many
pairs of positions of practically equal difficulty. Given this circumstance, the following
cases were possible regarding players’ rankings. Consider a pair of positions A and B.
If position A was easier than B according to Chess Tempo then: if the player ranked
A before B then this counted as a concordant pair, otherwise this counted as a discordant
pair (incorrect order). If A and B belonged to the same Chess Tempo difficulty class then
this pair was not included in the calculation of Tau, so it did not matter whether the player
ordered the problems A before B or B before A. Both cases were treated as acceptable,
and did not affect the player’s evaluated ranking performance. This is reasonable because
in this case there is no evidence of ranking error. However, in such cases we do not
actually know. Suppose that the player ranked A before B. In this case, there are two
possibilities: (1) the player actually considered both problems to be equally difficult, and
arbitrarily ordered A before B (just because a total ordering was required, and he had to
order them one way or the other); or (2) the player actually believed that A was easier
than B; in this case he was wrong, but there is no way to detect this from experimental
data. Our modified Tau measure can therefore be interpreted as a potentially optimistic
assessment of the player’s ranking accuracy.

24.3.3 Experiment in automated prediction of difficulty

In this section we carry out an experiment, using our 12 experimental positions, with a
program for automatically estimating the difficulty of tactical chess positions. We used
the approach to estimating difficulty proposed in (Stoiljkovikj et al, 2015), which will
be referred to as the SBG method. This method is based on machine learning about
difficulty for humans, using features of search trees that are searched by good human
players when solving a tactical chess problem.

The size of the combinatorial search space involved in solving the problem is the most
obvious source of difficulty. For an uninformed problem-solver without problem-specific
knowledge, the size of the search space would indeed be a useful indicator of difficulty.
For experienced chess players the situation is quite different. Such players employ their
knowledge to search this space very selectively so that only a small fraction of the entire
space is actually searched.

When solving tactical chess problems, human players use a repertoire of common
motifs that allow such a highly selective and effective search. Figure 24.1 illustrates this.
In this example, the solution consists in spotting the well-known motif of a pinned piece.
Brute force search, realized as, say, iterative deepening to depth 5 (which would be an
adequate depth in this example) would in this implementation require searching millions
of positions. Using the chess-specific motif of a pin, this is reduced to the order of
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Figure 24.1 Whate to move and win. An experienced player will immediately notice the motif that
Black king and Black knight on e4 are on the same file. This gives rise to the motif of pinning Black
knight with the move 1.Rel (green arrow). Knight on e4 is now attacked and cannot escape due to the
pin. Black may try to defend knight e4 with moving the other knight: 1...Na4-c5. Now a common
mechanism of exploiting a pin is used by White: attack the pinned piece with yet another piece. In this
case this can be accomplished by White pawn move to f3. On the next move, Black knight on e4 will be
captured, giving White a decisive advantage.

10 or 20 positions. It is this latter number that is indeed relevant for the difficulty of
the position for good players.

We will be referring to such a reduced search space as ‘meaningful search tree’. It
should be noted that all the players in our experiment easily had enough knowledge to
solve the position of Figure 24.1 quickly, exploring a small meaningful tree, as explained
in the caption of Figure 24.1. In this position, there is another common motif for White:
double attack with White rook move to b4, simultaneously attacking both Black knights.
However, a trivial search shows that in this position Black knights can defend each other
with the move Ne4 c5, so double attack motif does not work in this case.

To estimate the difficulty for an expert human player, the estimation program would
ideally simulate the search actually performed by the player and predict the difficulty
based on this simulated search. To simulate such a search, the program would have to
possess similar chess knowledge as the player. However, this knowledge consists of a very
large library of chess motifs, or patterns, of the kind illustrated in Figure 24.1. Some of
this knowledge is acquired by players through explicit instruction, and that part can be
found in chess books. The larger part of that pattern-based knowledge is however tacit
knowledge that a player has acquired through experience, but does not exist in formalized
and documented form. The difficulty in predicting the difficulty for experts lies in the
question: how to take into account such tacit knowledge?

The main idea of the SBG method is the concept of a ‘meaningful search tree’ (defined
later). This is based on the assumption that the search of the human chess expert can be
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simulated by a standard chess-playing program without knowing the extensive pattern
knowledge. Hopefully, for a given chess position, the meaningful tree approximates the
tree actually searched by a chess expert when searching for the best move in a position.
Accordingly, a meaningful tree is formally defined with this aim in mind. For a given
position P, the meaningful tree is a subtree of the game tree rooted in P. Suppose that
a player is given position P and is asked to find a winning move in > The player will
try to solve the problem by economical search, so he or she will only investigate moves
that come into consideration and discard other moves. The player’s pattern knowledge
and detected motifs will help the player to identify promising moves. The idea is to use a
standard chess engine like Stockfish to carry out a relatively shallow search (e.g., 10 ply)
and evaluate the positions in the corresponding game tree by backing-up heuristic values
of the positions in the leaves of this search tree. These backed-up heuristic evaluations
are hopefully indicative of what an expert player can (approximately) evaluate without
search, just by using his or her pattern knowledge. The meaningful tree is the game
tree up to a chosen depth limit (in our experiments set to 5 ply), with ‘unpromising’
moves removed from the tree (unpromising from the player’s point of view, or from
the opponent’s point of view, depending on whose move it is). Formally, for the task of
winning in P, the meaningful tree consists of the root position P, and all the player-to-
move positions whose backed-up heuristic value exceeds w (‘winning threshold’), and
the opponent-to-move positions whose value differs from the value of the best sibling
(from the opponent’s point of view) by no more than m (‘margin’). These parameters
were set to w = 200 centipawns, m = 50 centipawns in our experiment.

This design can be debated in the light of the question: how well do so defined
meaningful trees approximate trees that are actually searched by chess players?
Another question can be: the SBG approach is mainly concerned with the ‘meaningful
complexity’, and ignores some other sources of difficulty discussed in the next section,
such as ‘invisible moves’ (Neiman and Afek, 2011). Another contentious issue could be:
is it appropriate to assume that all the players (at least of the chess strength comparable
to our group of players) search more or less the same search tree? Or does this depend
on certain players and their chess knowledge, especially on their specific repertoire
of chess motifs? The classical study by De Groot (1965) on human problem-solving
in chess suggests that players solve chess problems in a similar way over large ranges of
chess rating (such as 400 rating points, as in the case of our 12 players). Experiments
in a related study (Gobet, 1998) also generally confirm this. The following is a relevant
result concerning this latter question. A quantitative model of chess problem-solving
of tactical problems as a Bayesian network was proposed in (Bratko et al, 2016).
The network is structured according to the classical chess problem-solving model in
(De Groot, 1965). Standard sets of chess motifs required to solve the 12 experimental
positions were defined and were needed to solve each problem. In most positions, more
motifs than one are relevant. Also, relevant chess moves to be searched by players that
corresponded to the positions’ motifs were defined. It was possible to observe success
of the players at detecting relevant motifs, and also at carrying out the calculations. The
players successfully detected relevant motifs in 88% of all the cases (Bratko et al, 2016).
Here we add how this percentage depends on the players’ ratings. This percentage
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was somewhat higher for the top-half ranked players (92%, average rating 2198), and
somewhat lower for the bottom-half ranked players (84%, average rating 1980). In spite
of this difference, this indicates that a large majority of our players were able to detect
relevant motifs correctly. The fact that the large majority of players detected relevant
motifs (standard sets for the experimental positions) supports the assumption that, at
least roughly, the players searched similar trees.

Some properties of a meaningful tree are naturally indicative of difficulty. For example,
the total number of nodes in a meaningful tree or the branching factors at different levels
of the tree. A more sophisticated indication of difficulty, is the attribute of a tree denoted
by NarrowSolution(L). This is defined as the number of opponent’s moves at level L in the
tree for which the winning player has only one good reply. A high value of NarrowSolution
indicates situations where the opponent has many promising moves, and each of them
requires to be met by the player with a unique reply.

In Stoiljkovikj ez al. (2015), 10 attributes of a meaningful tree of this kind were defined.
Another 10, chess-specific attributes of a position were defined, such as the number of
chess pieces in the position or the existence of ‘long moves’ in the meaningful tree. Long
moves are moves in which a chess piece moves by a long distance on the board, and
sometimes such moves are suspected of being harder to notice by chess players, so they
are one kind of ‘invisible moves’. They contribute to the difficulty. Definitions of all the
attributes can be found in (Stoiljkovikj et al., 2015).

These 20 attributes of a position define a space for machine learning, and the problem
of learning to predict the difficulty of chess positions can be formulated as follows. The
learning data consists of a set of chess positions together with their difficulty class, where
each position is described by the 20 attributes.

An experiment with learning to predict problem difficulty using this setting was
carried out by (Stoiljkovikj et al, 2015). Nine-hundred chess problems from Chess
Tempo were randomly selected for learning. The difficulty class (easy, medium, or hard)
was determined according to the Chess Tempo ratings of the problems, resulting in a
balanced learning set with 300 examples of each class. In that experiment, the average
Chess Tempo ratings of problems in the three learning subsets belonging to the three
classes were as follows: easy: 1254.6, medium: 1669.3, hard: 2088.8. The reported
classification results were very high (up to 83%, depending on the learning method
used). However, these results cannot be trusted due to a suspected methodological
slippage, which became apparent later when these experimental results could not be
completely reproduced. In this chapter we repeat the learning experiment with the same
set of learning problems (not including our 12 experimental positions), and the same
positions’ attribute values. However, to make the trained classifiers applicable to the
12 experimental problems of this chapter, we redefined the difficulty classes in the
learning data, so that the new classes are appropriate for the three difficulty classes in our
12 positions. To this end we moved the thresholds for class separation to the midpoints
between the Chess Tempo ratings of the three classes in the present experimental set, as
given in Table 24.1.

After this redefinition of the thresholds between classes, the class distribution became
imbalanced (which is less favourable for learning), as follows. Class easy: 479 examples,
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Table 24.1 The difficulty classes were determined
according to the Chess Tempo ratings.

1 rating < 1685 easy
2 1685 < rating < 2055 medium
3 2055 < rating hard

medium: 231 examples, hard: 190 examples. We used several learning methods imple-
mented in the scikit-learn machine learning library.

The best classification accuracy was obtained with Gradient Boosting Trees learning
method (60%, measured by 10-fold cross-validation). We will refer to this predictor of
difficulty as SBG2020. We applied this classifier to our 12 experimental problems. The
results are given in Table 24.1. For each position, the table also gives the position’s ranks
according to average players’ rankings, and the number of players that successfully solved
the position.

Here are some quick observations from the table. The actual success rates by our
players do not correlate very well with CT classes. Success rates of 100% (solved by all
12 players, see the column Success in Table 24.1) for problems 3 and 6, both medium
difficulty by Chess Tempo, are surprising. A closer look at position 3 gives a likely
explanation for what happened with this position. There are several winning moves in
position 3 which all counted as success in our study, while for an unclear reason Chess
"Tempo only accepted as correct one of these alternative solutions. A similar explanation
is possible for position 6. A closer look at position 6 suggests that this position is in fact
relatively easy. According to this, the predicted class ‘easy’ by the SBG2020 classifier
seems to be more appropriate. There are other discrepancies: problem 4, and some
problems in CT class hard. But for these we could not find any simple explanation other
than chance.

The sample correlation coefficients between the variables in Table ‘classes’ were
computed by representing the three classes easy, medium and hard with 1, 2, and 3
respectively. The correlations are as follows:

r( CT-class, Success) = -0.60 (P = 0.0383)

r( SBG2020-class, Success) = -0.79 (P = 0.0023)
r( PlayersRanking, Success) = -0.78 (P = 0.0029)
r( CT-class, SBG2020-class) = 0.79 (P = 0.0024)

Also of interest are relations between the perceived difficulty of the positions by
the players, represented by the joint players’ rankings (average ranking of the posi-
tions), and the measured difficulty (C’I=class) and automatically estimated difficulty
(SBG2020-class):

r ( Rank-by-players, CT-class) = 0.74
r ( Rank-by-players, SBG2020-class) = 0.94
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Table 24.2 Basic description of the Chess Tempo problem set.

Position CT class SBG2020 Rank Success

1 easy easy 3 11
2 easy easy 1 12
3 medium easy 2 12
4 medium medium 7 4
5 medium medium 8 5
6 medium easy 4 12
7 hard medium 6 3
8 hard hard 10 7
9 hard medium 9 8
10 hard medium ) 9
11 hard hard 12 4
12 hard hard 11 4

This is surprising as it suggests that the difficulty, as perceived by the human players,
in fact better correlates with the automatically predicted difficulty by the SBG2020
approach, than with the actually measured Chess Tempo difficulty. This can be however
at least partially explained by the problems mentioned above with positions 3 and 6,
whose solutions seem to have been treated too harshly in Chess Tempo. The average
ranking of the 12 positions by the 12 chess players is, interestingly, completely consistent
with the SBG2020 classification.

Finally, we can try to compare the appropriateness of SBG2020 classification with
respect to Chess Tempo classification by using Kendall’s Tau coefficient. This is useful
for comparison of the individual players’ rankings (earlier assessed by Kendall’s Tau)
with SBG2020 rankings. There is a difficulty in that players’ rankings are complete
orderings, whereas SB(G2020 classes only define a partial ordering. There are many
total orderings consistent with the SBG2020 partial ordering. Now imagine a human
player whose perceived position difficulties were exactly as by SBG2020. When asked
to produce a total ordering, as in our experiment, this player could answer with any of
the total rankings consistent with SB(G2020. Assuming that all these rankings are equally
likely, the expected value Tau over all these rankings is 0.78. Over all consistent rankings,
Tau is between 0.56 and 1, with standard deviation 0.106. This is practically equal to
Kendall’s Tau of the average players’ ranking. Even if the SBG approach is based on a
very crude approximation to human players’ game-tree search, it does seem to capture
well the difficulty of problems as perceived by humans.
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24.4 More Subtle Sources of Difficulty

There are some other sources of difficulty in chess problems, in addition to the size and
other properties of meaningful trees, which were used in the SBG method in the previous
section. In this section we point out other sources of difficulty, illustrated by examples
from our experimental positions. These sources of difficulty were not considered in the
SBG method.

24.4.1 Invisible moves

Some moves are hard to see by good chess players. Neiman and Afek (2011) investigated
the properties of chess moves that are difficult to find and anticipate. It is precisely good
chess player’s knowledge which is so successfully used to make search more selective, that
prevents the player from seeing such moves and is occasionally the cause of bad mistakes.
For example, novice players are taught from the beginning that chess pieces should be
developed as quickly as possible, therefore they have to move forward and preferably
towards the centre where they are generally the most powerful. This cliché makes the
players more likely to consider forward moves and sometimes automatically disregard
moves away from the centre. Thus some moves become more difficult to see simply for
geometrical reasons. Bent Larsen even points out that backward moves on diagonals are
particularly difficult to detect ‘except on the long diagonal’ (Larsen, 2014).

Of all possible backward moves, those of the knight are the most difficult to find
(Neiman and Afek, 2011). There is also a technical reason for this: As a short-range
piece, the knight in particular has to be centralized. It takes too long to bring it back into
the critical areas once it is out of play. There was an example of this kind of invisible
move in our experimental position no. 4 (Figure 24.2), which was only solved by four
players. Although the players who failed to solve it were in fact considering the right idea
(described in players’ retrospections), they simply could not see the winning move by a
knight into the corner of the board.

24.4.2 Seemingly good moves and the ‘Einstellung’ effect

Clearly, difficulty should not be confused with complexity. Sometimes a problem may
seem easy because the position does not seem complex at all. There may be an attractive
move that seems to lead to victory, but in reality it does not. It is the presence of such a
‘seemingly good’ move (Stoiljkovikj et al., 2015) that diverts the players attention from
a truly good move and thus makes the problem difficult. In our experimental position
no. 7 (Figure 24.3), there is a seemingly good move: 1...Qd8-b6. But the real solution
requires the insertion of the move 1...Bf8-h6 before pinning the knight. It would be
much easier to spot the correct move sequence if the above mentioned move with the
queen did not look so attractive. In fact, only three players correctly solved this problem.
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Figure 24.2 There are two main motifs for White here. The first is to attack Black king via open e file,
and part of this idea is the pinned Black bishop at e7. An obvious move to exploit that is by move 1.Qe3,
wncreasing the pressure on Be7. However, this does not work. Black can successfully defend with 1...Ne5,
which can be determined by relatively complex calculation. Another, completely different motif is
triggered by a complex pattern: Black queen is surrounded by many White pieces and does not have any
safe square to move to. This gives rise to the idea of trapping Black queen. 1o this end, queen has to be
attacked, and White knight on c2 can do that, in two ways. One way is to move to d4 (red arrow). This
move however disables the control of square c4 by White rook’s on e4. So Black queen can now escape to
c4. Now White has another familiar powerful pattern at disposal: discovered attack on Black queen with
move 2.Ne6, also attacking Black rook d8. All that looks very strong for White, but as it turns out not
sufficient for a clear win. This was calculated by many players who did play Nd4 and eventually failed
to solve this problem. Much more straightforward and effective is the invisible move 1.Nal (green
arrow), immediately winning Black queen, but not seen by many players.

When faced with a decision in chess, people are sometimes misled by familiar patterns
and motifs, so that they miss better solutions. When we solve problems, our prior
knowledge usually helps us by efficiently leading us to solutions that have worked for
us in the past. However, if a problem requires a new solution, it can sometimes be
surprisingly difficult to find the new solution because of our prior knowledge. This
problem-solving effect was discovered by a psychologist Abraham Luchins (1942). He
called this effect the ‘Einstellung’ effect. Bilalic ez al., (2008) experimentally confirmed
that the Einstellung effect also exists in chess. A familiar pattern in a chess position
drew the attention of the players to find a familiar solution (which did not work) and
prevented them from finding a real solution that could be linked to a completely different
pattern.



502  Predicting Problem Difficulty in Chess

Figure 24.3 Black to move wins. It is trivial for a good player to immediately notice the possibility of
pinming White knight on d4 against White king with Qb6 (red arrow). The seemingly straightforward
variation s thus 1... Qb6 2.Rfd1 Bhé6 (another common method: attack the piece defending the pinned
knight on d4) 3.0Qd3 Nxd4 4.0xd4 Be3+ winning White queen. This looks excellent for Black, but fails
to notice that instead of 3.Qd3 White can unexpectedly strike back with 3.NdS5. After that it is no longer
clear whether Black can win. The clear winning line for Black s 1...Bh6 (green arrow) 2.Qd3 Qb6 and
now this indeed wins.

24.5 Conclusions

This is a summary of the results of the analysis of our experimental data in expert
problem-solving in chess. The results apply to solving tactical chess problems with Chess
Tempo ratings roughly between 1500 and 2300, and players with FIDE ratings between
1800 and 2300:

1. A negative correlation was found between player’s success in solving problems and
the Chess Tempo rating of the problems, which is as expected.

2. There was no evidence of a correlation between the success of the players and
the FIDE rating of the players. This is surprising. A plausible explanation is that
success refers to finding a winning move in one position, whereas the FIDE rating
measures success over entire games; that is, over a sequence of positions. Winning
a game often means making a better decision than your opponent in only one or
two positions in the whole game.

3. There is a statistically significant positive correlation between the players’ ratings
and the correctness of the ranking by the players of the ‘relevant’ position pairs
according to their difficulty, although this relationship is quite weak.
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We carried out an experiment in which the difficulty of the 12 experimental positions
was automatically estimated using the SBG method. The main idea of the SBG is to
use the properties of a ‘meaningful’ search tree as attributes for learning to estimate the
difficulty of example positions, which are divided into difficulty classes. A meaningful
search tree is defined as an attempt to automatically construct approximations to trees
searched by human experts without knowing human expertise. The learned classifier
was applied to our experimental positions, and the resulting classification of the positions
compared well with the Chess Tempo difficulty classes, and also to the average perceived
difficulty by the players. A question for future work is to explore why the SBG has done
surprisingly well, even though it is based on a rather crude approximation to problem-
solving by human experts.
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