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Abstract This paper contributes to the understanding of human problem solving
involved in mental tasks that require exploration among alternatives. Examples of
such tasks are theorem proving and classical games like chess. De Groot’s largely
used model of chess players’ thinking conceptually consists of two stages: (1) detec-
tion of general possibilities, or “motifs”, that indicate promising ideas the player may
try to explore in a given chess position, and (2) calculation of concrete chess variations
to establish whether any of the motifs can indeed be exploited to win the game. Strong
chess players have to master both of these two components of chess problem solving
skill. The first component reflects the player’s chess-specific knowledge, whereas the
second applies more generally in game playing and other combinatorial problems. In
this paper, we studied experimentally the relative importance of the two components
of problem solving skill in tactical chess problems. A possibly surprising conclusion
of our experiments is that for our type of chess problems, and players over a rather
large range of chess strength, it is the calculating ability, rather than chess-specific
pattern-based knowledge, that better discriminates among the players regarding their
success. We also formulated De Groot’s model as a Causal Bayesian Network and set
the probabilities in the network according to our experimental results.

1 Introduction

Consider human solving of mental tasks such as theorem proving, symbolic
manipulation problems, and classical games such as chess or checkers. A general,
widely accepted computational model of solving such problems involves searching
among alternatives (Newell and Simon 1972). In games, for example, this amounts
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to searching through “my” possible moves, then for each “my” move considering
all possible opponent’s replies, then again considering my possible moves for each
of the opponent’s replies, etc. This search may stop when positions are encountered
that are estimated without doubt as drawn, or good or bad for one of the sides. The
result of search is “my” move (if exists) that guarantees my win against any
possible opponent’s reply.

In fact, this simple algorithm is in principle sufficient to solve problems of the
types mentioned above. However, in cases of high combinatorial complexity of
problems, such as chess where there are many alternatives at each step, this is
practically infeasible because it takes too long for humans, and even for computers.
Therefore the search has to be carried out intelligently, relying on search heuristics
that are based on the problem solver’s knowledge about the domain. Newell coined
the term knowledge search (1990) describing the way an agent uses their directly
available long-term knowledge to bear on the current situation in order to control
the search. These heuristics guide the search in promising directions and thus
reduce the complexity of search needed to solve problems. The usual, empirically
observed relation between the amount of solver’s problem-specific knowledge and
the amount of search required is: the more knowledge the problem-solver possesses,
the less search is needed.

In this paper, we study this trade-off between knowledge and search in human
game playing, and investigate their relative importance for success. To this end, we
conducted experiments in human problem solving in the game of chess. The
problem for the participants was: given a chess position, find the best move for the
side to move. The human problem solving model for this case, relevant to our
study, was stated in the classical work by De Groot (1946, 1978) and was also used
by Tikhomirov and Poznyanskaya (1966).

De Groot’s model of chess players’ thinking about best moves conceptually
consists of two stages: (1) position investigation, and (2) investigation of possi-
bilities, or search. Stage 1, “position investigation” consists of identifying general
properties of a position like “Black king is not well protected, so a direct attack on
Black king should be considered”, and familiar patterns like “White knight is
pinned by the Black bishop, so the knight might be in danger”. Such patterns make
the player suspect that there might be a way to checkmate Black king, and that
White knight might be attacked by other enemy pieces and eventually lost because
a pinned knight cannot escape from the attack. However, no search among concrete
moves is done at Stage 1. This is done at Stage 2, “investigation of possibilities”.
This consists of the calculation of concrete moves and variations that may lead to
the actual exploitation of the spotted motifs. That is, in our examples, to force the
checkmate of the king, or force the capture of the knight. Stage 2 is similar to the
usual computational problem solving model that involves search described earlier.
In this paper, Stage 1 will be referred to as “detection of motifs”, and Stage 2 as
“calculation of variations”. Strong chess players have to master both components of
problem-solving skill: detection of motifs, and calculation of variations. The first
component is based on the player’s chess-specific knowledge, which reflects the
player’s general understanding of the game. The player has acquired such an
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understanding through experience and her study of chess literature. The second
component, i.e. calculation, seems to be less specific to chess, and is reflected in the
player’s ability to reliably calculate in his or her mind the possible variations.

The research question explored in this paper is: which of these two components
better separates successful players from unsuccessful ones. By successful players
we mean those who find best moves more often.

2 Examples of Motifs and Calculation

To further clarify the two stage model of chess problem solving, we now present
concrete examples of motifs and calculations.

Figure 1, diagram (a), illustrates “a pin”, one of the most common and effective
motifs (patterns) in chess. White rook attacks Black knight. The knight cannot
escape because this would leave Black king under attack. Black cannot do anything
to prevent the loss of the knight, and White wins. Diagram (b) shows how such a
motif enables the player to find the right move for White almost without any
calculation. The motif itself immediately suggests the winning move rook b1-b7. It
then remains to calculate that after all possible Black king moves, White rook can
capture the knight. This amounts to searching some 8 positions altogether.

Fig. 1 Diagram a. Black to move: One of the simplest and most common motifs in chess, called a
“pin”. White rook is attacking the Black knight. The knight cannot escape from the rook’s attack
because if the knight moves away Black king will come under the rook’s attack (indicated by the
red arrow) which means a knight’s move is illegal. Therefore the Black knight is said to be pinned,
and in fact lost in our case. Diagram b, White to move: The White player in a glance notices an
instance of the familiar pin motif (Black knight and Black king are both on the same line), so the
player will immediately perform a little calculation to see whether this motif can actually be
exploited. The winning move is: rook moves from square b1 to b7 (green arrow) to pin the knight.
After any Black’s reply, the knight will be captured by the rook
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Without the motif, the unguided calculation would have to consider incompa-
rably more positions, something like 30.000. This estimate can be roughly worked
out as follows. Let White perform, for example, the breadth-first search. To solve
the problem of Fig. 1b, the required depth of search is four half-moves. That is: first
level moves by White, then Black’s replies, and then the second level moves by
White and another level of Black’s replies. In each position, White has roughly 22
possible moves (maximally 14 moves by the rook plus 8 moves by the king). Black
has roughly 16 possible moves in each position (maximally 8 moves by the knight
and 8 by the king). Taking into account gradual reduction of the number of moves
with increasing level, this means something roughly in the order of 30.000 posi-
tions; compared with 8 when the motif is available.

It should be noted that the pin is a very general concept. It does not have to
necessarily involve a rook and a knight and a king, as in our example. A pin occurs
between any three pieces where the pinning piece is a long range piece that moves
either horizontally, vertically or diagonally (a queen, a rook or a bishop), the pinned
piece and the target piece that is indirectly threatened by the pinning piece:

Pinning piece                           Pinned piece                        Target piece     

The arrows show the line of attack by the pinning piece. The pinned and the target
piece are of the same colour, and the pinning piece is of the opposite colour. The
dashed line only becomes available to the pinning piece when the pinned piece
moves away and frees the path to the target piece. Typically, a pin is all the more
effective if the target piece is more valuable than the pinned piece. If the pinned

Fig. 2 Diagram a: There is no pin yet on the board, but can White achieve a pin by forcing the
Black pieces into the same line? Yes, withWhite rook move from b1 to b8 (green arrow). After the
move Black king is in check and has to move to the 7-th rank, from h8 to h7 or g7. Then the
familiar motif appears (diagram b)
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piece moves away to escape the attack, the pinning piece may capture the target,
possibly winning even more material than just the pinned piece.

Figure 2 shows an example where a pin cannot be immediately created in one
move, but can be forced in two moves. The calculation now becomes more
demanding, but not significantly so because the motif still guides search very
effectively. Any reasonably strong player will immediately look for a way of
forcing a pin, and find it in no time.

Figure 3, diagram (a), shows a rather more complex example on the same theme.
The pin motif is the same, but two additional rooks now significantly complicate the
calculation. But even so, the calculation proceeds in more or less a similar way as in
the previous examples according to the familiar mechanisms of exploiting a pin.

Fig. 3 Diagram a: The pin motif in a more complex position with an extra rook for White and
Black. The same idea works forWhite as in Fig. 1, but the calculation here is more complex. White
may start with rook from b1 to b7, pinning the knight. Now Black has more defensive resources
enabled by the presence of Black rook. One way is to play Re8-e7, defending the knight with the
rook, and interrupting Black knight pin against Black king. However, the knight is still pinned, this
time against Black rook. So White, seeing this, logically increases the pressure on Black knight by
playing Ra1-a7, further exploiting the pin. Black knight may try to flee to d5, also defending Black
rook. But the rook is then attacked by two White rooks, so White captures twice on e7 and wins.
Instead of moving knight to d5, Black may try to check White king with rook f7 check. Now White
has to be careful and move the king to e2 which wins eventually, but not to g2 (or g1 or g3)
because after that, Black can deliver another check by rook f7-g7. After White king g2-h2 Black
has no further checks, but can save himself with Nc7-e6. Suddenly, Black pieces have reorganised
themselves, Black rook is now protected by both the king and knight, and position is drawn. This
example nicely shows the role of calculation. The calculation is driven by the motifs, but the final
truth is determined by calculation. Diagram b: This is the same as diagram (a) except that White
king is now at f4 instead of f2. This small difference offers Black additional defensive possibilities
and further complicates the calculation drastically. AfterWhite rooks have doubled on the 7th rank,
Black knight can move out of attack to d5 or e6 with check. This way Black gets out of the pin
trouble. But in the process, the knight gets misplaced and cannot return towards his king.
Eventually White pieces can trap the knight and win. We do not give concrete variations because
they become numerous and very long
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Estimates of the number of positions to be searched are: (1) a few tens if guided by
the motif, and (2) some 6.000.000 if unguided, which is completely outside human
calculation capability. This example illustrates the typical law that the difference
between the complexity of guided vs. unguided search grows exponentially with the
required search depth. Figure 3b is a small variation of 3a in which White king is at
f4 instead of f2. This example shows that, although the main pin motif remains the
same as in 3a, the small variation enormously increases the calculation complexity
and even brings in several additional motifs in different variations.

3 Experimental Setup

We investigated our research question with an experiment in which 12 chess
players of various chess strengths were asked to solve 12 tactical chess problems.
A chess position is said to be tactical if finding the best move requires calculation of
variations, in addition to detecting tactical motifs in the positions.

Our players’ chess strength, in terms of official FIDE chess ratings was in the
range between 1845 and 2279 rating points. The strength of registered chess players
is officially computed by FIDE (World Chess Federation), using the Elo rating
system. This rating system was designed by Arpad Elo (Elo 1978). For each player,
this rating is calculated and regularly updated according to the players’ tournament
results. The rating range of our players, between 1845 and 2279, means that there
were large differences in chess strength between the players. The lowest end of this
range corresponds to club players, and the highest end to chess masters (to obtain
the FIDE master title, the player’s rating has to reach at least 2300 at some point in
their career). There were actually two chess masters among our participants.
According to the definition of the Elo rating system, the expected result in a match
between our top ranked player against our lowest ranked player would be about
92 % against 8 % (the stronger player winning 92 % of all possible points).

In addition to the differences in chess strength expressed through chess ratings,
one could also consider other differences between the players. One such factor
might be the chess school where a player was taught, or the particular instructor by
whom the player was trained. However, in this paper we did not explore the effects
of such additional factors. The 12 chess problems were selected from the Chess
Tempo web-site (www.chesstempo.com) where the problems are rated according to
their difficulty. Chess problems are rated in a similar way as the players. However,
in Chess Tempo a problem’s rating is determined by the success of the players
when solving the problem. The principle is as follows: If a weak player solved a
problem then this counts as strong evidence that the problem is easy. So the
problem’s rating goes down. If a stronger player solved the problem, the problem’s
rating still goes down, but not as much as for a weak player. On the contrary, if a
strong player failed to solve the problem, this counts as strong evidence that the
problem is hard, and the problem’s rating increases. In detail, a problem’s rating in
ChessTempo is determined by using the Glicko rating system (Glickman 1999)
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which is similar to the Elo system. The Glicko system, at difference with Elo, takes
into account the time a player has been inactive. In cases of longer inactivity, the
player’s rating becomes uncertain. To illustrate the meaning of ratings in
ChessTempo, a player with rating 2000 has a 50 % chance of correctly solving a
problem with the same rating of 2000. The same player has a 76 % chance to solve
a problem with the rating 1800, and a 24 % chance to solve a problem rated 2200.

In our selection we ensured a mix of problems that largely differ in their diffi-
culty. Our selected positions were all tactical chess problems, randomly selected
from Chess Tempo according to their difficulty ratings. Based on their Chess
Tempo ratings, our problems can be divided into three classes of difficulty: “easy”
(2 problems; their average Chess Tempo rating was 1493.9), “medium” (4 prob-
lems; average rating 1878.8), and “hard” (6 problems; average rating 2243.5).
While the problems within the same difficulty class have very similar difficulty
rating, each of the three classes is separated from their adjacent classes by at least
350 Chess Tempo rating points. Some problems have more than one correct
solution. To ensure correctness, all the solutions were verified by a chess playing
program.

The experimental setup was as follows. Chess problems, that is chess positions
in which the participant was asked to find a winning move, were displayed as chess
diagrams on a monitor, and the players’ solution moves were recorded. Allowed
solving time per position was limited to 3 min.

During the player’s problem solving, the player’s eye movements were tracked
by an eye-tracking device EyeLink 1000 and recorded into a database. In the last
decades, with wide availability of eye tracking devices, studying eye movements
has turned into one of the main methods of research in chess decision making
(Reingold and Charness 2005). The processing of recorded eye-movements reveals
roughly on which squares of the chessboard the participant was focussing at any
time during problem solving.

After the player finished with the 12 problems, a retrospection interview was
conducted in which the player described how he or she approached the problem. It
was possible to detect from these retrospections what motifs were considered by the
player, and roughly how the calculation of variations driven by the motifs was
done. Other details of the experiments are described in (Hristova et al. 2014a, b)
where the question of automated assessment of the difficulty of chess problems was
tackled.

In this paper, we analyse the experimental data with respect to the research
question of this paper. The relevant experimental data includes the following. For
each player and position, the relevant information consists of: (1) correctness of the
solution proposed by the player, (2) the motifs considered by the player in com-
parison with the motifs needed to solve the problem, and (3) the correctness of the
calculation of variations. The motifs considered were found through the players’
retrospections, and to some extent verified by the eye movement data, although this
verification cannot be done completely reliably.

Figure 4 shows an example of how the eye tracking data can be used. It should
also be noted that not all relevant motifs in a position were needed to solve the
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problem. Some of the motifs did not give rise to a winning move. Sometimes there
were several alternative winning moves, and there were accordingly several alter-
native motifs, any of them being sufficient to find at least one of the solutions. Some
winning moves were derived from a calculation that required a combination of
more than one motif.

These possibilities had to be taken into account when deciding whether the
player detected a complete set of motifs needed to carry out correct calculation. To
this end, for each position and each possible solution of the position, we defined the
“standard” set of motifs necessary and sufficient to find the solution. In defining the
standard sets of relevant motifs, we took into account all the motifs mentioned by
all the players. In very rare cases when needed, we had to add motifs that fully
enabled correct calculation for each possible solution. In doing this, we used our
own chess expertise (two of us have chess ratings over 2300 and 2200 respectively).
As we verified all the solutions and corresponding chess variations by a chess

Fig. 4 One of the more difficult test positions. The colouring was extracted from eye tracking
data, and shows the intensity of eye focussing on areas of the chess board by a player (red is the
most intensive, then follow yellow and green; white means no significant focussing). The two
diagrams correspond to two players, call them A and B. There are two main motifs in this position:
(1) attack Black king who is placed very uncomfortably and can be attacked e.g. by the White rook
at square e4 (middle of the board) and White Queen moving to square e3. The directions of attack
by these moves are indicate by red arrows; (2) Black Queen is surrounded by White pieces and it
looks that it might be trapped; some relevant moves by a White Knight against Black Queen are
shown with blue arrows. Calculation of concrete variations reveals that attacking Black King does
not win for White, but trapping Black Queen does (by moving the Knight from c2 into the bottom
left corner of the board). Player A, according to retrospection, considered both motifs and solved
the problem. Player B only considered attacking Black King and failed to solve the problem. This
difference in motif detection by the two players is indicated in the eye tracking images, although
rather subtly
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program, we believe that there would be very little room for defining reasonable
alternative standard sets of motifs.

4 Results

4.1 Experimental Data and Basic Statistics

Our experimental data consisted of the performance of 12 players in all 12 posi-
tions, that is 144 players’ solutions. Out of these, we omitted four cases that were
meaningless because the player misunderstood the task (confused the side to move
in the position). This gives a total of 140 proposed solutions that we analysed in the
sequel (144 − 4 = 140).

Here are some results relevant to our research questions. The players correctly
found a winning move in 89 out of 140 problems, i.e. 63.6 %. The players correctly
detected all the motifs relevant to a solution in 121 problems (86.43 %). Note that
this is the percentage of cases in which the players perfectly detected relevant
motifs. The calculations were completely correct in 35.7 % of the problems. It
should be noted that a problem was often solved correctly even in the case of
imperfect calculation or imperfect detection of motifs.

In the sequel we slightly refine the possible outcomes and introduce the fol-
lowing notation:

• Variable S stands for “success”, that is correct solution found.
• Variable M stands for the event “motifs detected”. For a problem and a player,

M is true if the player correctly detected all the motifs in the problem position
that are relevant to a solution of the problem (perfect detection of motifs);
otherwise M is false.

• Variable C stands for “calculation correctness”. For a problem and a player, C
may take one of three possible values:

• C = CC if the player’s calculation in the position is completely correct; that
is, it clearly states the critical variations

• C = CA if the player’s calculation is “adequate”. That is, the calculation is
basically correct, it does suggest a correct move to play (although possibly
with a bit of luck), but it is incomplete and/or indicates the player’s uncer-
tainty. For example, the calculation is accompanied by the player’s com-
ments like “I was not able to calculate everything”, “I had to rely on
intuition”, etc.

• C = CI if the player’s calculation is clearly incorrect, although it may,
through sheer luck, even suggest a correct move to play, but for wrong
reasons

CC (calculation correct) occurred in 35.7 % of all 140 cases, CA (calculation
adequate) occurred in 22.1 % of all cases, and CI in 42.1 %. Note that these do not
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exactly sum up to 100 % because of rounding errors. Taking these relative fre-
quencies as simple estimates of probabilities we have:

P(CC) = 0.357
P(CA) = 0.221
P(CC v CA) = 0.579
P(CI) = 0.421

Again, the numbers above do not sum up exactly due to rounding errors.
The following results are indicative of the importance of motif detection.

Relevant motifs were not perfectly detected in 19 problems. In none of these
problems, the calculation was correct; moreover, it was not even adequate in any of
them. Estimating probabilities by relative frequencies, we have:

P(CC | * M) = 0/19 = 0.0
P(CC v CA | * M) = 0.0

From this, one may conclude that it is very unlikely to perform correct or adequate
calculation without relevant motifs.

On the other hand, a successful solution may be found with a bit of luck even in
the case of incorrect calculation. This happened in 8 out of 59 cases, so relative
frequency is:

P(S | CI) = 0.1356

Even more, a successful solution may be found by luck in the absence of
detected motifs and under incorrect calculation. This happened in 2 out of 19 cases,
giving relative frequency:

P(S | * M & CI) = 0.1053

Regarding our question about the relative importance for success between
detection of relevant motifs and calculation, correlations between some of the
variables in our domain are important. These variables are: success in a player
finding a correct move in a given position, detection of motifs, and correctness of
calculation. We computed Pearson’s sample correlation coefficients, which requires
numerical input data. To this end we defined corresponding numerical variables as
follows:

• Success = 1 if the problem was successfully solved; otherwise Success = 0
• MotifsDetected = 1 if all the relevant motifs were detected in the position,

otherwise MotifsDetected = 0
• CalculationOK = 1 if the calculation was correct or adequate (in our notation

CC or CA), otherwise CalculationOK = 0 (i.e. calculation incorrect, CI)

The correlations between pairs of these variables are:
r(Success, Motifs-Detected) = 0.4368
r(Success, CalculationOK) = 0.8870
r(MotifsDetected, CalculationOK) = 0.4643

578 I. Bratko et al.



It should be noted that the correlation between success and correctness of cal-
culation is much higher than the other two correlations above. This confirms that
the correctness of calculation is a more important predictor of success than the
detection of motifs. This can be explained by the facts that motifs are highly needed
for correct calculation, but they are not highly sufficient for correct calculation.

4.2 Causal Bayesian Network Model of Problem Solving
in Our Domain

We can formulate a probabilistic model of our chess problem domain as a Causal
Bayesian Network. We will use the three binary variables Success, MotifsDetected
and CalculationOK. However, in a Bayesian network it will be more convenient to
treat them as Boolean variables rather than numerical, so the numerical value 1 will
be replaced by true, and 0 by false.

It is most natural to view the causal dependences between these three events
according to the problem solving process:first, the player looks for relevantmotifs, then
she uses these motifs to drive the calculation which results in a successful or unsuc-
cessful solution. This corresponds to the structure of the Bayesian network in Fig. 5.

Note that the link betweenMotifsDetected and Success cannot be ignored because
Success also depends probabilistically on MotifsDetected when CalculationOK
is known.

The probabilities for this network are:

P(MotifsDetected) = 0.8643
P(CalculationOK | MotifsDetected) = 0.6694
P(CalculationOK | * MotifsDetected) = 0.000
P(Success | CalculationOK ^ MotifsDetected) = 1.000
P(Success | CalculationOK ^ * MotifsDetected) = 1.000
P(Success | * CalculationOK ^ MotifsDetected) = 0.150
P(Success | * CalculationOK ^ * MotifsDetected) = 0.1053

It is interesting to check what happens if we omit the link between
MotifsDetected and Success, which makes the structure of the model simpler, more
intuitive, and better reflect De Groot’s basic model of chess thinking (the stage of
motif detection is followed by the calculation of variations, then the solver’s
solution emerges). The structure then becomes:

MotifsDetected CalculationOK Success

MotifsDetected CalculationOK

Success

Fig. 5 The structure of a
Bayesian network model of
chess problem solving

Search Versus Knowledge in Human Problem Solving … 579



The list of conditional probabilities in the Bayesian network is now also simplified
into:

P(MotifsDetected) = 0.8643
P(CalculationOK | MotifsDetected) = 0.6694
P(CalculationOK | * MotifsDetected) = 0.0
P(Success | CalculationOK) = 1.0
P(Success | * CalculationOK) = 0.1356

The simpler Bayesian model is in fact a good approximation to the full Bayesian
model. Table 1 gives a comparison between complete joint probability distribution
computed with the full model and with the simplified one. Mean absolute difference
between full model’s joint probabilities and simplified model’s joint probabilities is
0.0021. Mean absolute difference relative to the average probability value in this
distribution (i.e. 0.125) is 1.6 %.

5 Discussion

The following observations are indicated by our experimental results:

• The results largely confirm de Groot’s problem solving model. The first stage of
problem solving is concerned with the detection of motifs, and the second stage
is devoted to the calculation of concrete variations to verify whether motifs can
actually be exploited. In all the 19 cases when relevant motifs were not detected,
the calculation of variations was incorrect. It seems that it is practically
impossible to calculate variations correctly without relevant motifs. When the
motifs were detected, the calculation was at least adequate in about 67 % of the
cases.

• In rare cases, about 10 %, a player did manage to solve the problem successfully
even without detecting the motifs and with incorrect calculation. This can be
explained by the fact that the number of generally reasonable moves in a chess
position may be rather small, so even a random choice may succeed occasionally.

Table 1 M, C, S stand for
MotifsDetected,
CalculationOK, and Success
respectively. Pfull and Psimple

are the probabilities of the
indicated combined events
according to the full Bayes
model and the simplified
model, respectively

M C S Pfull Psimple

t t t 0.5786 0.5786
t t f 0.0000 0.0000
t f t 0.0429 0.0387
t f f 0.2429 0.2470
f f t 0.0000 0.0000
f t f 0.0000 0.0000
f f t 0.0143 0.0184
f f f 0.1214 0.1173
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• Relevant motifs were correctly detected in 121 cases, that is 86 % of the total of
140 cases. In these 121 cases, the calculation was completely correct in 43 % of
the cases, and calculation was at least adequate in 67 % of the 121 cases. This
indicates the conclusion that for our players and type of chess problems, it was
easier to detect the motifs than to perform the calculation.

This last point indicates that in our experiment, the dominant discriminating
problem solving component between the players’ success and failure was the cal-
culation of variations and not detection of motifs (that is domain specific knowl-
edge). Not much difference, in terms of players’ problem solving performance,
arises from the differences in players’ pattern-based knowledge. This may be sur-
prising because our players’ chess strength (measured in Elo ratings) varied so
much. The results show, possibly against the common intuition, that it is the cal-
culation ability that decisively differentiates between players’ chess problem solv-
ing success and failure.

To interpret this finding carefully, it should be noted that in our experiment, we
used tactical chess problems. In contrast to long term strategic problems (also referred
to as “positional play”), tactical problems are expected to require more calculation.
However, as our results show, calculation alone without pattern knowledge (motifs)
is far from sufficient.

Statistical evidence supporting this conclusion regarding pattern knowledge vs.
search is also reflected in the correlations between variables. The correlation
coefficient between the players’ correctness of solutions and the players’ success in
detecting relevant motifs is 0.4368. On the other hand, the correlation between the
correctness of solutions and at least adequacy of calculation is much higher: 0.8870.
It should be admitted that the correctness of calculation was, for each player and
position, evaluated somewhat subjectively by a chess expert as explained in
Sect. 3.1. However, this does not change the overall conclusion that follows from
the experimental data. Namely, that the ability to calculate variations is more dis-
criminative among the players regarding their success than is the ability to detect
relevant motifs.

The conclusion about calculation ability being more discriminative than pattern
knowledge is relevant to a discussion in chess of different views regarding chess
teaching and training even at top grandmaster level (Kotov 1971; Wenzhe 2001).
The question is which component of chess skill is more important and deserves
more attention in teaching and training: chess-specific pattern knowledge, or the
ability to calculate variations. There is a common agreement that both of these
components are necessary to play really well. However, one side of this discussion,
including the Soviet school of chess (Kotov 1971), puts more emphasis on the deep
understanding of chess, which includes chess-specific pattern knowledge. The other
view is that deep understanding of chess is not sufficiently effective in practical
game playing without very reliable support from calculation. Therefore some put
relatively more emphasis on the ability to calculate concrete variations. The results
of this paper might be interpreted as supportive of the latter approach in respect of
this particular dilemma.
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The differences between the two approaches are also reflected in chess training
of very strong players. This is well illustrated by the following comments by the
Russian grandmaster, a former world champion and successful chess coach
Alexander Khalifman in the article “Le Quang Liem and the Soviet school of chess”
(Chessintranslation.com 2011). Khalifman commented on the young Vietnamise
player Le Quang Liem, the surprising winner of a very strong chess tournament in
Moscow in 2011. Khalifman explains: “What a school is and what its presence or
absence means is something that you can understand very well if you analyse with
Asian chess players…. I worked a little bit with Le Quang Liem, and I will say
honestly that sometimes my eyes popped out of my head. He is also a very talented
boy… and he is trying very hard to grow. But at the moment all he does is calculate
and calculate variations. He calculates very well, by the way. But a school is, in my
opinion, what you would call a basis of positional principles, playing from general
considerations…” This is how Khalifman described his view on the relative defi-
ciency of elements of Soviet chess school in the young Asian player who was, in
Khalifman’s opinion, overwhelmingly relying on calculation.

6 Conclusions

Our results indicate that the dominant discriminating problem solving component is
the calculation of variations and not detection of motifs. This may come as a
surprise in the view that traditional chess teaching puts so much emphasis on
general chess knowledge which includes detection of chess motifs.

In our experiments, no significant difference in players’ problem solving per-
formance arises from the differences in players’ pattern-based knowledge (ability to
detect motifs), despite large Elo rating differences between the players.

Our results also clearly confirm one aspect of classical De Groot’s model of chess
thinking. Namely, that satisfactory calculation is not possible without detection
of motifs.

It should be noted that these findings are limited to the type of problems used in
our experiments, that is tactical chess problems. One question for future work is
whether the relative importance of calculation vs. chess pattern-knowledge also
extends to non-tactical positions, particularly to long-term positional play. A first
intuition on this might be that in such chess positions calculation of variations is
relatively less important than in tactical positions. On the other hand, even in sharp
positional play it is important to calculate how positional motifs can be realised by
concrete sequences of moves.

Another topic of future work is to develop a program for automatically detecting
players’ motifs directly from the players eye tracking data. This task seems to be
rather demanding, but it could help to reduce some uncertainty in interpreting
players’ retrospections regarding the detection of motifs.
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