
 

Incorporating Qualitative Equations in Process-Based Models  

 

Darko Čerepnalkoski1, Ljup čo Todorovski2, Nataša Atanasova3, Sašo Džeroski1 

 
1 Department of Knowledge Technologies, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia 

2 Faculty of Administration, University of Ljubljana, Gosarjeva ul. 5, 1000 Ljubljana, Slovenia 
3 Faculty of Civil and Geodetic Engineering, University of Ljubljana, Hajdrihova 28, SI-1000 Ljubljana, Slovenia 

darko.cerepnalkoski@ijs.si, ljupco.todorovski@fu.uni-lj.si, natanaso@fgg.uni-lj.si, saso.dzeroski@ijs.si 
 
 
 

Abstract 
This paper explores the possibility of extending Process-
based models with Qualitative differential equations. 
Process-based modeling is a modeling technique that uses 
two-level approach for modeling dynamical systems. It 
models systems on a purely qualitative level in terms of 
entities and processes that involve those entities on one 
hand, and a quantitative level on which all entities and 
processes are given a quantitative formulation which is that 
automatically translated into a set of ordinary differential 
equations. This paper aims to illustrate that this formalism 
can be extended with an intermediate level of modeling 
which consists of qualitative equations. 

Introduction 

Modeling is an essential part of scientific endeavor, even 
though different scientific disciplines have different ideas 
of how modeling is performed. Many different modeling 
techniques are used across the scientific world, producing 
as a result many different types of models expressed in a 
variety of modeling formalisms. Models can be analyzed 
and classified according to different properties. One 
important property of models is the level of abstraction. 
According to this property, models can range from purely 
qualitative, which focus on the relations between the 
concepts in the system being modeled, to purely 
quantitative ones, specified in some precise mathematical 
notation, most typically as equations. Between these two 
extremes there is a whole spectrum of modeling 
approaches with different level of abstraction.  
 When it comes to modeling dynamical systems, one 
approach is to use process-based models. Process-based 
models (Bridewell et al., 2008) use a two-level 
representation. At the qualitative level, a process-based 
model consists of entities, which correspond to the main 
actors of the system and processes, which correspond to 
relations between entities. At the quantitative level, each 
entity is described in terms of variables and constants that 
represent its properties, and each process is represented as 
a set of equations, algebraic or differential, that quantify 

the relations between the entities. The equations from all 
the processes in the model can be compiled to obtain a 
system of differential equations which is the ultimate 
quantitative representation of the system. 
 The key feature of process-based models is that they 
allow modeling at different levels of abstraction. At the 
qualitative level, they represent an abstract view of the 
system being modeled, showing only the key components 
of the system and the relations between them. At the 
quantitative level, a detailed view of the system is 
presented, which is equivalent to a system of ordinary 
differential equations allowing for further quantitative 
analysis of the system. This two-level paradigm can be 
augmented with an additional middle level that will 
provide an additional level of reasoning about the model. 
 In this paper, we propose an extension of the process-
based formalism with an intermediate level of abstraction. 
This level of abstraction is modeled using concepts from 
qualitative reasoning. The principal change is the 
introduction of qualitative differential equations (QDEs) to 
the formalism. Every process from the purely qualitative 
level is described is terms of QDEs. Each QDE, in turn, 
has a particular quantitative form, when translated to the 
quantitative level. 
 The rest of the paper is structured as follows. In Section 
2, we present the Process-Based Formalism used to specify 
process-based models, using an example from aquatic 
ecosystems. In Section 3, we present a way to extend the 
formalism using qualitative equations as a middle level 
between the purely qualitative description and the 
differential equations. Section 4 concludes the paper and 
outlines further work. 

Process-Based Modeling 

For representing process-based models we use a process-
based formalism. The formalism is designed for the 
description of dynamical systems, i.e., systems that change 
over time. Dynamical systems have a state which is a 
description of the system at a given point in time and 



processes that represent phenomena that occur in the 
system and cause the state to change over time. 

Modeling Components: Entities and Processes 
 The state of the system is given as a set of entities. Each 
entity corresponds to one logical object (material or 
abstract) that appears in the system. If we take, for 
example, an aquatic environment, such as a lake as a 
system, then entities would correspond to different 
nutrients such as phosphorus and nitrogen, different 
phytoplankton and/or zooplankton species or perhaps fish 
or other animals. Each entity in turn is described with one 
or more properties that can be fixed (constants) or can 
change with time (variables). Phytoplankton, for example, 
can be specified by giving its concentration (variable), 
growth rate (variable) and maximal growth rate (constant).  

Table 1. A partial model of an ecosystem consisting of entities 
that appear in the system. 

entity phyto1 { 
 vars: conc{role: state; initial: 10},  
             limitation{aggregation:product}; 
 consts: maxGrowthRate = 0.5, maxLossRate = 0.02,       
                 sedimentationRate = 0.1; 
} 
entity phyto2 { 
 vars: conc{role: state; initial: 2},           
             limitation{aggregation:product}; 
 consts: maxGrowthRate = 1, maxLossRate = 0.02,  
                 sedimentationRate = 0.2; 
} 
entity phosphorus { 
 vars: conc{role: state}; 
 consts: halfSaturation=0.02, alpha=0.1; 
}         
entity nitrogen { 
 vars: conc{role: exogenous}; 
 consts: halfSaturation=0.2, alpha=0.7; 
} 
  
 Table 1 presents a partial model specification of the 
hypothetical lake. This partial model specifies the four 
entities in the system. Two nutrients – phosphorus and 
nitrogen, and two species of phytoplankton – denoted as 
phyto1 and phyto2.  
 Each entity is described by variables and constants that 
denote its properties that are important in the given 
context. The specification of the constants is 
straightforward, by giving their values, and optionally 
(omitted in this example) their unit of measurement. In 
Table 1, for example, the constant halfSaturation of the 
entity nitrogen is assigned a value of 0.2.  
 When we specify a variable, we provide several pieces 
of information. The role of the variable in the system, 
which can be state or exogenous, gives the information of 
whether this variable is considered as part of the state of 
system or as an input/output variable. The aggregation 

function specifies the method of aggregation of the 
influences on the variable. The influences come from 
processes that involve the entity. We can also specify an 
initial value of the variable. For example, the variable conc 
of phyto1 in Table 1 has an initial value of 10. 
 The phenomena that occur in the system are described 
by the processes of the model. From the name of the 
formalism: Process-Based, it is apparent that the processes 
are the key components of a model. Each process in the 
model corresponds to a phenomenon in the system. In our 
lake example, processes that occur would be growth and 
loss of phytoplankton or zooplankton feeding on 
phytoplankton.  

Table 2. Processes involving the entities from Table 1. 

process limitedGrowthPhyto1(phyto1, [phosphorus, nitrogen]) { 
 processes: nutLimitationPs, nutLimitationNs; 
 equations : 
   td(phyto1.conc) = phyto1.maxGrowthRate * phyto1.conc *  
         phyto1.limitation, 
   td(phosphorus.conc) = -phosphorus.alpha *  
         phyto1.maxGrowthRate * phyto1.conc * phyto1.limitation; 
} 
process limitedGrowthPhyto2(phyto2, phosphorus) { 
 processes: nutLimitationPs2; 
 equations : 
   td(phyto2.conc) = phyto2.maxGrowthRate * phyto2.conc *  
         phyto2.limitation, 
   td(phosphorus.conc) = -phosphorus.alpha *  
        phyto2.maxGrowthRate * phyto2.conc * phyto2.limitation; 
} 
process nutLimitationPs(phyto1, phosphorus) { 
 equations:  
       phyto1.limitation = phosphorus.conc / (phosphorus.conc +   
         phosphorus.halfSaturation); 
} 
process nutLimitationNs(phyto1, nitrogen) { 
 equations: 
       phyto1.limitation = nitrogen.conc / (nitrogen.conc +  
         nitrogen.halfSaturation); 
} 
process nutLimitationPs2(phyto2, phosphorus) { 
 equations:  
       phyto2.limitation = phosphorus.conc^2 / (phosphorus.conc^2  
         + phosphorus.halfSaturation); 
} 
 
 Table 2 shows the processes from the lake model. These 
processes involve the entities from Table 1. A process can 
be thought of as a relation between entities. Every process 
involves one or more entities from the model. 
limitedGrothPhyto1, for example, involves three entities – 
phyto1, phosphorus and nitrogen because it represents the 
growth of phytoplankton 1 that is limited by phosphorus 
and nitrogen. 
 In addition to being a qualitative relation between 
entities, a process also provides a quantitative description 
of that relation as one or more equations. An equation can 



contain only variables and constants of the entities that 
participate in the corresponding process. In the example in 
Table 2, the equations in nutLimitationPs can contain 
variables and constants only from phyto1 and phosphorus 
because those are the entities that take part in 
nutLimitationPs. 
 The equations from all of the processes are combined 
into a single set of differential equation, which is the 
purely quantitative model of the system. This model can 
then be used to perform quantitative analysis. We can vary 
the values of parameters, perform simulation of the model, 
perform sensitivity analysis and so forth. For each state 
variable in the model, we compile one differential equation 
that will have the derivative of that variable as its left hand 
side. The equation is compiled by combining all equations 
in the model that influence (have as left hand side) that 
variable. We combine the equations with the aggregation 
function that is given in the specification of that variable. 
The aggregation function can be summation, multiplication 
and so on. For example, the variable phosphorus.conc (the 
variable conc of the entity phosphorus) is a state variable 
(see Table 1), meaning that the end model will present a 
differential equation for that variable. This variable is 
influenced by two equations, those in processes 
limitedGrowthPhyto1 and limitedGrowthPhyto2. Having 
in mind that the influences on this variable are combined 
by the default aggregation function – summation, we 
obtain the following equation for the rate of change of 
phosphorus.conc: 
 
�

��
���� = −0.1 ∗ 0.5 ∗ 1. ���� ∗ 1. ��� − 0.1 ∗ 1 ∗ 2. ���� ∗ 2. ��� 

 
where conc stands for phosphorus.conc, p1 for phyto1, p2 
for phyto2 and lim for limitation. p1.lim and p2.lim should 
also be expanded with their equations given in the model, 
but for the sake of maintaining simplicity we will omit this 
here. 

Specifying Domain Knowledge: Templates and 
Instances 
Note that some entities and processes presented in Tables 1 
and 2 share common properties. If we compare the entities 
phyto1 and phyto2 from Table 1, we can see that they share 
many similarities with respect to their variables and 
constants. This is to be expected since they are both 
phytoplankton species. On the other hand, if we compare 
the processes limitedGrowthPhyto1 and 
limitedGrowthPhyto2 from Table 2, we can see that they 
have equations that adhere to the same general pattern, 
which is logical because they both represent processes of 
limited growth of phytoplankton. Therefore, it makes sense 
to try to group such similar properties within some more 
general concepts. Hence, instead of directly 
creating/specifying entities and processes, and specifying 
all their properties, we use two-phase specification. 
      The knowledge (properties) which holds for more 
entities or processes is specified in objects which we call 

templates, in particular, entity templates - for specifying 
common properties for entities and process templates - for 
specifying common properties for processes. The idea is 
that the template captures some general knowledge that 
holds for many different cases and can be reused when 
dealing with different specific scenarios. An entity 
template is an incomplete entity specification. It only 
contains partial information for an entity. However, this 
information is general and can be used for more than one 
entity. A similar statement can be made for process 
templates – they can be seen as incomplete processes, i.e., 
processes that only contain some general information and 
miss specific information. Examples of entity templates 
and process templates from the lake domain are given in 
Table 3. 

Table 3. Entity templates and process templates for the lake 
domain 

template entity EcosystemEntity { 
 vars : conc {aggregation:sum; unit:"kg/m^3"; range:<0,inf>}; 
} 
template entity PrimaryProducer : EcosystemEntity { 
 vars: limitation{aggregation:product}; 
 consts:  
  maxGrowthRate{ range: <0,inf>; unit:"1/(day)"}, 
  maxLossRate { range: <0, inf>; unit:"1/(day)"}, 
  sedimentationRate { range: <0, inf>; unit:"1/(day)"}; 
} 
template entity Nutrient : EcosystemEntity { 
 consts: 
  halfSaturation {range: <0,inf>; unit:"mg/l"}, 
  alpha {range: <0,inf>; 
                 unit: "mgAlgaeBiomass/mgZooBiomass" 
         }; 
} 
template process  
Growth(pp : PrimaryProducer, ns : Nutrient<1,inf>) {} 
 
template process LimitedGrowth: Growth { 
 processes : NutLimitationFunction(pp, <n:ns>); 
 equations : 
  td(pp.conc) = pp.maxGrowthRate * pp.conc * pp.limitation, 
  td(<n:ns>.conc) = -n.alpha * pp.maxGrowthRate * pp.conc  
           * pp.limitation; 
} 
template process  
NutLimitationFunction(pp : PrimaryProducer, n : Nutrient) {} 
template process LimitationMonod1 : NutLimitationFunction { 
 equations: pp.limitation = n.conc / (n.conc + n.halfSaturation); 
} 
template process LimitationMonod2 : NutLimitationFunction { 
 equations: pp.limitation = n.conc * n.conc / (n.conc * n.conc +  
        n.halfSaturation); 
} 
 
 Entity templates and process templates are organized in 
a hierarchy.  This enables them to inherit the properties of 



their ancestors, and provides for a cleaner design of entity 
and process templates. 
 We use templates to create/specify entity or process 
instances. The instance acquires all the properties which 
were specified in the template. Additional properties which 
are characteristic for the particular instance can be 
specified. 
 Table 4 presents the equivalent of the model from 
Tables 1 and 2, specified using the templates from Table 3.  

Table 4. Entity instances and process instances from the lake 
domain 

entity phyto1 : PrimaryProducer { 
 vars: conc{role: state; initial: 10}, limitation; 
 consts: maxGrowthRate = 0.5, maxLossRate = 0.02,               
                 sedimentationRate = 0.1; 
} 
entity phyto2 : PrimaryProducer { 
 vars: conc{role: state; initial: 2}, limitation; 
 consts: maxGrowthRate = 1, maxLossRate = 0.02,  
                 sedimentationRate = 0.2; 
} 
entity phosphorus : Nutrient { 
 vars: conc{role: state}; 
 consts: halfSaturation=0.02, alpha=0.1; 
}         
entity nitrogen : Nutrient { 
 vars: conc{role: exogenous}; 
 consts: halfSaturation=0.2, alpha=0.7; 
} 
process limitedGrowthPhyto1(phyto1, [phosphorus, nitrogen]): 
LimitedGrowth{ 
 processes: nutLimitationPs, nutLimitationNs; 
} 
process limitedGrowthPhyto2(phyto2, phosphorus): 
LimitedGrowth{ 
 processes: nutLimitationPs2; 
} 
process nutLimitationPs(phyto1, phosphorus): 
LimitationMonod1{} 
process nutLimitationNs(phyto1, nitrogen): LimitationMonod1{} 
process nutLimitationPs2(phyto2, phosphorus): 
LimitationMonod2{} 

Introducing Qualitative Equations to the 
Process-Based Formalism 

Process-based formalism enables modeling on two levels: 
purely qualitative and fully quantitative. Between those 
two levels however, there is a whole spectrum of modeling 
possibilities with different levels of abstraction. We argue 
that process-based modeling allows for modeling on 
various levels of abstraction in excess of those already 
present in the formalism. This paper proposes an extension 
of the formalism with the introduction of an intermediate 
level of abstraction that will lie in between the two existing 
ones. The addition that we propose is based on QSIM 

(Kuipers, 1994), i.e., we want to provide for qualitative 
reasoning by means of qualitative differential equations 
(QDEs).  
 QSIM models dynamical systems in terms of qualitative 
variables and qualitative equations. Therefore our 
formalism has to be modified to encompass qualitative 
variables and qualitative equations. The required changes 
are blended into the two existing fundamental concepts – 
entities and processes. 
 Within entities, both variables and constants are adapted. 
The need for modification arises from the fact that QSIM 
substitutes the domain of real numbers in regular equations 
with the concept of landmarks and inter-landmark 
intervals. The range property of both variables and 
constants within entity templates is substituted with a 
domain property, which consists of a list of allowed 
landmarks. For example, the conc variable of the 
EcosystemEntity entity template from Table 3, instead of 
having as range the interval [0, +∞), will have as domain 
the ordered set {zero, low, medium, high}. On the other 
hand, every occurrence of a real number in the 
specification of entities has to be changes to a landmark. In 
particular, the values of constants and initial values of 
variables in entity instances have to be specified as 
landmarks. 
 When speaking about constants another issue arises. 
QSIM is agnostic of any quantitative relations, so constants 
are needed as long as they influence the qualitative 
behavior of the system. As a result, the user has the 
opportunity to keep constants and substitute landmark 
values for the real numbers or to completely disregard 
constants if they do not affect the qualitative behavior of 
the system. In our example, constants do not influence the 
qualitative behavior of the system and therefore we omit 
them from the model. Table 5 presents the entity templates 
and entity instances from our lake example. 

Table 5. Entity templates and entity instances for the aquatic 
ecosystem 

// Entity templates 
template entity EcosystemEntity { 
 vars : conc {aggregation:sum; unit:"kg/m^3"; range: [zero,  
       low, medium, high]}; 
} 
template entity PrimaryProducer : EcosystemEntity { 
 vars: limitation{aggregation:product; range:[zero, low,    
       medium, high]}; 
} 
template entity Nutrient : EcosystemEntity {} 
// Entity instances 
entity phyto1 : PrimaryProducer { 
 vars: conc{role: state; initial: high}, limitation; 
} 
entity phyto2 : PrimaryProducer { 
 vars: conc{role: state; initial: medium}, limitation; 
} 
entity phosphorus : Nutrient {vars: conc{role: state};}         
entity nitrogen : Nutrient {vars: conc{role: exogenous};} 



 Suitable changes are also introduced to processes. The 
key modification is the substitution of the quantitative 
equations with qualitative constraints. Each equation 
translates into one or more qualitative constraints. The 
most important constraint is the one that regards 
monotonicity. The QSIM formalism uses the predicates 
M+ and M- to specify a term that is monotonically 
increasing or monotonically decreasing with respect to 
another term. Each quantitative equation translates to one 
of this predicates and possibly several other helper 
predicates. These auxiliary predicates are artifacts of the 
QSIM formalism and are necessary in order to translate 
larger and more complex equations. These include DERIV 
for specifying derivatives of variables, MULT for 
specifying multiplication and ADD for specifying addition. 
All these changes are introduced in the process templates. 
Process instances remain unchanged. Table 6 lists the 
process templates and process instances for the aquatic 
ecosystem. 

Table 6. Process templates and process instances for the aquatic 
ecosystem. 

 
template process  
Growth(pp : PrimaryProducer, ns : Nutrient<1,inf>) {} 
 
template process LimitedGrowth: Growth { 
 processes : NutLimitationFunction(pp, <n:ns>); 
 constraints : 
  DERIV(pp.conc, pp_dt), 
  MULT(pp.conc, pp.limitation, X), 
  M+(X, pp_dt), 
  DERIV(<n:ns>.conc, n_dt), 
  M-(X, n_dt); 
} 
template process  
NutLimitationFunction(pp : PrimaryProducer, n : Nutrient) {} 
template process LimitationMonod1 : NutLimitationFunction { 
 constraints: M+(pp.limitation, n.conc); 
} 
template process LimitationMonod2 : NutLimitationFunction { 
 constraints: M+(pp.limitation, n.conc); 
} 
 
// Process instances 
process limitedGrowthPhyto1(phyto1, [phosphorus, nitrogen]): 
LimitedGrowth{ 
 processes: nutLimitationPs, nutLimitationNs; 
} 
process limitedGrowthPhyto2(phyto2, phosphorus): 
LimitedGrowth{ 
 processes: nutLimitationPs2; 
} 
process nutLimitationPs(phyto1, phosphorus): 
LimitationMonod1{} 
process nutLimitationNs(phyto1, nitrogen): LimitationMonod1{} 
process nutLimitationPs2(phyto2, phosphorus): 
LimitationMonod2{} 

 The last note is on combining process-based models to 
obtain the final model. For quantitative models, the final 
model was a system of differential equations, whereas 
here, the final model is simply a list of constraints. The 
final model is obtained by concatenating the constraints 
from all of the processes. For each state variable a 
constraint is added that provides the aggregation of the 
constraints that influence that variable. 

Related Work 

The formalism for modeling dynamical systems, presented 
here, builds on previous work in the areas of equation 
discovery (Todorovski and Džeroski, 2007) and inductive 
process modeling (Bridewell et al., 2008). The work on 
equation discovery uses the formalism of ordinary 
differential equations to represent models and grammars to 
represent the space of potential equation-based models for 
a given modeling task. Human experts have to transform 
knowledge about modeling dynamical systems in the 
domain at hand to an appropriate grammar for equation 
discovery.  Algorithms for searching the space of candidate 
models and fitting constant model parameters against 
observed system behavior are then combined to find an 
optimal model that closely fit the observations. Inductive 
process modeling approach unifies the formalisms for 
representing models and knowledge into processes, 
entities, and templates thereof, in a way we outlined in the 
first part of the paper. This paper extends the process-based 
modeling formalism towards qualitative models 
represented in terms of QSIM constraints (Kuipers, 1994). 
 The work presented in this paper is also related to papers 
on the topic of integrating qualitative and quantitative 
reasoning methods to address the task of automated 
modeling of dynamical systems. Bradley et al. (2001) 
system PRET is a method inducing equation-based models 
from observed system behavior. PRET integrates cross-
domain knowledge in the process of induction, which is 
supported by a variety of reasoning methods, ranging from 
qualitative reasoning and simulation to numerical 
simulations and parameter fitting methods. While PRET 
focus on implicit constraints that help checking the validity 
of a candidate model, our formalism make explicit 
constraints about how model is composed out of domain-
specific entities and processes. These are also used to 
represent the final equation-based model, which greatly 
improves its comprehensibility to human experts in the 
particular domain of use. Furthermore, QOPH system 
(Garret et al., 2007) induces qualitative models from 
numeric observations of the system behavior. Similarly to 
our formalism, QOPH uses modeling knowledge casted in 
terms of model components corresponding to process 
templates in our formalism. In contrast to the work 
presented here, the QOPH focus is limited to qualitative 
models; it uses discretization of numeric data to obtain 
qualitative observations that are in turn used to induce 
qualitative models. 



Conclusion and Further Work 

This paper presented Process-based modeling trough an 
example from aquatic ecosystems. Process-based modeling 
is a paradigm with two distinct levels of abstraction – one 
purely qualitative and one fully quantitative. Between 
those levels there is a continuum of different levels of 
abstraction. In this paper we have presented one way of 
extending Process-based modeling with an intermediate 
level of abstraction. QSIM formalism was used for 
describing concepts on this intermediate level. 
 This paper serves as a proof of principle that process-
based modeling can be extended to include intermediate 
qualitative levels. In the future, this proof of principle 
should be further developed into a fully fledged system for 
modeling using QSIM formalism. Other features should 
include automatic or assisted translation of equations from 
the quantitative level of the formalism to qualitative 
equations and assisted translation of qualitative equations 
into quantitative ones. Other directions for further work 
can be implementing other levels of abstraction according 
to other existing formalism that lie in between the two 
levels offered by process-based models. 

References 

Bradley, E., Easley, M., and Stolle, R. (2001) Reasoning 
about nonlinear system identification. Artificial 
Intelligence, 133, 139—188. 
 
Bridewell, W., Langley, P., Todorovski, L., & Džeroski, S. 
(2008) Inductive process modeling. Machine Learning, 71, 
1—32. 
 
Garret S.M., Coghill, G.M., Shrinivasan, A., and King, 
R.D. (2007) Learning qualitative models of physical and 
biological systems. In Computational Discovery of 
Scientific Knowledge (pp. 248—272), Springer, 
Heidelberg, Germany. 
 
Kuipers, B. (1994) Qualitative Reasoning. MIT Press, 
Cambridbge, MA. 
 
Todorovski, L. and Džeroski S. (2007) Integrating domain 
knowledge in equation discovery. In Computational 
Discovery of Scientific Knowledge (pp. 69—97), Springer, 
Heidelberg, Germany. 
 


