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Abstract 

Qualitative representations have proven to be useful 
formalisms for capturing human mental models. As a result, 
qualitative modeling could become an important tool for 
cognitive science. Specifically, an environment in which 
qualitative representations can be used to explore mental 
models and different type of reasoning and simulations can 
be performed on these models can be a useful tool for 
cognitive scientists. In this paper, we introduce the 
Qualitative Concept Map system, designed for cognitive 
scientists, for building and simulating qualitative and 
Bayesian models using qualitative process theory and 
Bayesian inference.  
 

Introduction 

Qualitative representations capture the intuitive, causal 
aspects of many human mental models (Forbus & Gentner 
1997). This includes aspects of modeling not handled by 
traditional formalisms, such as conditions of applicability 
and other types of modeling knowledge.  Qualitative 
modeling could become an important tool for cognitive 
science, by providing formal languages for expressing 
human mental models. The qualitative reasoning 
community has explored a wide range of representations 
and techniques, pursuing its goal to capture the breadth of 
qualitative reasoning, ranging from the person in the street 
to the expertise of scientists (Forbus et al. 2004). A unified 
platform in which cognitive scientists can apply qualitative 
representations, explore mental models and be able to 
integrate these models with other forms of reasoning, can 
become a useful tool for cognitive scientists.   
 In this paper, we present the Qualitative Concept Map 
system (QCM) which provides a cognitive scientist 
friendly environment that allows modelers to explore 
qualitative models, incorporate them into probabilistic 
models and output them in formats usable in other forms of 
reasoning (e.g. analogical reasoning). An earlier version of 
this system was used to build models of transcript data 
(Dehghani, Unsworth, Lovett, & Forbus, 2007). These 
models were exported as predicated calculus statements 
which were used via analogical generalization to classify 
the models based on the culture and level of expertise of 
the participants. Since then, we have expanded the model 

in several ways. First, we integrated our qualitative 
simulator (Gizmo), to provide a complementary first-
principles simulation engine. Second, we added a 
probabilistic reasoning mode. Finally, we enhanced the 
user interface functionality to provide easier access to 
reasoning features. 
 We first introduce our system, discuss its different 
features and describe some real-world cognitive science 
examples modeled in it. Next, we describe the qualitative 
mode of the system and Gizmo. We then describe the 
probabilistic mode and how information available in the 
qualitative mode can be integrated into the probabilistic 
mode. We close by discussing related and future work. 

Qualitative Concept Map System 

QCM is the first modeling tool which has been specifically 
designed for cognitive scientists. It provides a unified 
reasoning platform in which mental models can be 
constructed and analyzed using  Qualitative Process theory 
(Forbus, 1984) and Bayesian Networks (Pearl 1988). QCM 
is connected to Gizmo, a full implementation of QP theory, 
for providing qualitative simulations, including 
envisionment. QCM also uses a Bayesian inference 
algorithm for calculating probabilities of evidence and 
posterior probabilities.  
 QCM uses a concept map interface (Novak & Gowin, 
1984).  For example, Figure 1 shows how QCM can be 
used to model the effects of fear on different properties of 
the self, and effects of external processes on these 
properties, as described in Jami ‘al Sa’adat (The Collector 
of Felicities) (al-Naraqi, 18th Century), an Islamic book of 
ethics written in the 18

th
 century. QCM automatically 

checks for any modeling errors which violate the laws of 
QP theory and probability theory, providing detailed error 
messages. QCM can import and export models via 
GraphML (Brandes, Eiglsperger, Herman, Himsolt, & 
Marshall, 2001), allowing graphs drawn in QCM to be 
easily viewed in other graph drawing programs. This 
facilitates collaboration between modelers. More 
importantly, for cognitive simulation purposes, models can 
be exported as predicate calculus statements. This enables 
QCM models to be used in a variety of types of reasoning, 
such as analogical reasoning.  



 QCM utilizes multiple panes to represent distinct 
qualitative states.  This is important for capturing changes 
over time.  For example, often modelers need to discuss 
immediate effects of a change followed by long-term 
effects of a change. The meta-pane (Figure 2) allows 
modelers to see all the states at once. Modelers can easily 
extend the vocabulary of specific processes and quantities 
used in the models, to expedite model creation.   
 QCM has been used for modeling a variety of different 
phenomena, from abstract models of religious beliefs to 

concrete qualitative reasoning scenarios. Figure 3 
illustrates one pane from a model for the Bears 
Disappearing scenario modeled from transcript data 
gathered by psychologists from a native American group 
(Dehghani et al. 2007). Figure 4 shows the initial state of a 
heat transfer scenario and figure 6 is an example of 
Bayesian reasoning in QCM.  

QP Modeling 

QP theory as a representation language for physical 
phenomena includes:  

• Continuous parameters (quantities)  
• Causal relationships between them (influences)  
• Mechanisms underlying physical causality 

(physical processes) 
Systems and phenomena are modeled via sets of entities 
with continuous parameters, whose relationships are 
expressed using a causal, qualitative mathematics, where 
processes provide an explicit notion of mechanism. In QP 

 Figure 1: The Effects of Fear on Different Properties of the Self 

 
Figure 2: The Meta-Pane 



theory direct influences are modeled using I+ (≡ Increases) 
and I- (≡ Decreases) which indicate an integral connection 
between two parameters, i.e., heat flow decreases the heat 
of its source and increases the heat of its destination. 

Indirect influences are modeled by ∝Q+ (≡ Influences) and 
∝Q- (≡ InfluencesOpposite) which indicate functional 
dependence between two parameters, i.e., the heat of 
something determines its temperature. Gizmo Mk2 is a full  

 Figure 3: The Bears Disappearing Scenario Modeled from Transcript Data 

 
Figure 4: Heat-Transfer Scenario 



 

implementation of QP theory and works as the qualitative 
reasoning engine of QCM. Gizmo has been designed to be 
lightweight and incremental to be used as a module in 
larger systems. The user has tight control over the process 
of qualitative simulation in Gizmo. Algorithms for both 
total and attainable envisioning are included as well.  
 In order to provide support for novice modelers, the 
domain theory and the scenario of the model are 
automatically extracted from the graph and sent to Gizmo. 
This is extraction is performed by going over all the nodes 
in the graph and, for each node, determining the type of 
node it is (e.g. Entity, Process, Quantity). Based on this 
information, QCM automatically obtains the required 
information for that type of node from the graph and sends 
the information to Gizmo. The domain theory extracted for 
the heat-transfer model of Figure 4 is presented in Figure 
5. If the system determines that the model is missing some 
required information, a detailed error message is presented 
to the modeler.  

The automatic extraction of the domain theory and the 
scenario file is, we believe, a major boon to novice 
modelers.   While many of the ideas of qualitative 
modeling come naturally to scientists, outside of computer 
science, experience in writing logically quantified 
formulae is rare.  Modelers need motivation, and being 
able to get results without having to first write a general 
domain theory helps reduce the entry barrier.   As their 
models become more complex, the automatically produced 
models can become a starting point for writing standard 
QP theory domain models.   

Bayesian Modeling 

Agents continually update their beliefs using different 

;;; Quantity Functions 

(defquantityfunction Rate (?thing)) 

(defquantityfunction heat-flow-rate (?Rate)) 

(defquantityfunction heat (?Amount)) 

(defquantityfunction Amount (?thing)) 

(defquantityfunction temp (?Amount)) 

 

;;; Entities 

(defentity G-type 

  :quantities   ((heat :type Amount)  

                 (temp :type Amount)) 

  :consequences ((qprop (temp G-type) 

                        (heat G-type))) 

  :documentation "finite-thermal-physob") 

 

(defentity F-type 

  :quantities   ((heat :type Amount)  

                 (temp :type Amount)) 

  :consequences ((qprop (temp F-type) 

                        (heat F-type))) 

  :documentation "finite-thermal-physob") 

 

;;; Processes 

(defprocess heat-flow 

 :participants ((the-G :type G-type) 

                (the-F :type F-type)) 

 :conditions   ((> (temp the-G) (temp the-F))) 

 :quantities   ((heat-flow-rate :type Rate)) 

 :consequences ((i- (heat the-G) heat-flow-rate) 

                (i+ (heat the-F) heat-flow-rate) 

                (qprop (heat-flow-rate heat-flow)  

                        (temp the-G)) 

                (qprop- (heat-flow-rate heat-flow) 

                         (temp the-F)))) 

 

 

Figure 1: Domain Theory generated from the Heat-Transfer 

Scenario 

 Figure 6: A Bayesian Network 

 



types of new information. These updates affect their causal 
beliefs about the uncertainties in the world. In order to 
model this process, we need a rich causal representation 
and a method for capturing and updating uncertain beliefs 
about the world. QP theory provides us with a high level of 
expressiveness needed to capture many intuitive, causal 
aspects of human cognition. One can use the QP 
framework to reason about relations between things and 
the effect of these relations on the state of the world. 
However, QP theory does not provide the mechanism 
necessary for capturing probabilities. Bayesian networks 
(Pearl, 1988) are the most widely used approach for 
probabilistic reasoning. This formalism provides a succinct 
representation for probabilities, where conditional 
probabilities can be represented and reasoned with in an 
efficient manner. Providing an interface in which both QP 
and Bayesian formalisms can be used in parallel can 
potentially be helpful for cognitive scientists. 
 QCM provides a framework in which the agent’s 
knowledge about the causal structure of the world can be 
captured using the QP formalism, while the agent’s 
uncertain knowledge and expectations about the outcomes 
of his/her actions can be captured by subjective 
probabilities and represented by a Bayesian Network. 
Modelers can switch the mode of reasoning from QP to 
Bayesian and make probabilistic models. This feature 
allows cognitive scientists to take advantage of different 
types of reasoning available in both formalisms. In the 
Bayesian mode, modelers can perform exact inference on 
the network and calculate the probabilities using Recursive 
Conditioning (RC) (Darwiche, 2001). RC is an any-space 
algorithm which works by recursively partitioning the 
network into smaller networks using conditioning and 
solving each subnetwork as an independent problem. 
Networks created in the Bayesian mode are saved in the 
Hugin format, which is the standard format for many data 
mining and machine learning programs. This again helps 
modelers who use QCM collaborate more easily with other 
scientists using other modeling programs. 

Determining a Priori Probabilities using 

Qualitative Simulations 

One of the main obstacles in probabilistic reasoning is 
finding the a priori probabilities of variables in the model. 
One approach to overcome this obstacle is to use 
qualitative simulations. QCM uses the information 
available in the QP mode to calculate a priori probabilities 
of quantities used in the qualitative model. In this 
framework, the probability distribution is defined over a 
set of possible worlds determined by the constraints of the 
qualitative model. If the modeler chooses to include a 
qualitative parameter, such as a quantity or a derivative, as 
a node in the probabilistic model, QCM can determine the 
probabilistic distribution of the values of that parameter by 
model counting. The idea is to calculate the degree of 
belief in that statement over all the possible worlds 
determined by qualitative envisionment. For example, if 
(temp F) >  (temp G) relationship from the heat-

transfer scenario of Figure 4 needs to be included as a node 
in the model, QCM performs an attainable envisionment 
determining in how many possible worlds  (temp F) β 
(temp F)where β={<,<=,=,>=,>,?} hold to be 
true. Based on this measure a probability value can be 
assigned to (temp F) >  (temp G)(see Figure 6 for 
an example of a Bayesian network which uses this 
relationship). In other words, we are saying that under the 
current constraints in n of m possible worlds (temp F) >  
(temp G), therefore the probability of (temp F) >  
(temp G)is n/m. We believe this method can provide a 
robust way of calculating a priori probabilities for physical 
phenomena for which we can define a QP model for. 

Related Work 

QCM is a successor to VModel (Forbus et al. 2001). 
VModel was developed to help middle-school students 
learn science. Like QCM, it uses a subset of QP theory to 
provide strong semantics.  However, VModel was limited 
to single-state reasoning, whereas QCM can be used to 
model continuous causal phenomena with multiple states. 
Similar differences hold with Betty’s Brain (Biswas et al 
2001), which provides a domain-specific concept map 
environment that students can use in learning stream 
ecology.   
 The closest other qualitative modeling tools are 
MOBUM (Machado & Bredeweg, 2001) and VISIGARP 
(Bouwer & Bredeweg 2001) which have lead to Garp3 
(Bredweg et al 2006, Bredweg et al 2007).   Like QCM, 
these environments are aimed at researchers, but their 
focus is on constructing models for qualitative simulation, 
including generic, first-principles domain theories.  QCM 
focuses instead on helping capture concrete, situation-
specific qualitative explanations of phenomena.  Thus, it 
provides a useful tool for scientists working with interview 
data. 
 Different approaches for qualitative Bayesian inference 
have been proposed. These methods include: qualitative 
probabilistic networks (Wellman 1990), qualitative 
certainty networks (Parsons and Mamdani 1993) and a 
method which incorporates order of magnitude reasoning 
in qualitative probabilistic networks (Parsons 1995). 
Keppens (2007a, 2007b) employs some of these methods 
for qualitative Bayesian evidential reasoning in the domain 
of crime investigation. QCM integrates information 
available from qualitative simulations in probabilistic 
networks, whereas other approaches mostly use qualitative 
techniques in performing inference on Bayesian networks. 

Conclusions 

QCM provides the basic functionality needed for cognitive 
scientists to build, simulate and explore qualitative mental 
models. This system has been expanded in several ways 
since the version used in Dehghani et al. (2007). First, it 
now uses Gizmo as its qualitative reasoning engine, 



offering a full range of qualitative simulation abilities. 
Second, modelers can now work in a probabilistic mode 
and use RC to perform exact inference on their models. 
Third, QCM automatically integrates qualitative 
information for calculating a priori probabilities of 
quantities used in the qualitative mode. Fourth, the 
interface of the system has been enhanced offering easier 
access to reasoning capabilities. Finally, models can now 
be exported in different formats facilitating collaboration 
between modelers. We believe that QCM provides the 
formalism and the functionality necessary for automatic 
evaluation of psychological data. Moreover, it can 
potentially be a helpful tool for teaching undergraduate 
cognitive science courses. 
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