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Abstract
Capturing conceptual knowledge in QR models is be-
coming of interest to a larger audience of domain ex-
perts. Consequently, we have been training several
groups to effectively create QR models during the last
few years. In this paper we describe our teaching ex-
periences, the issues the modellers encountered and the
solutions to solve them in the form of reusable patterns,
and finally a structured way to debug models.

Introduction
Domain experts have been making more complex QR mod-
els the last few years. The models capture several processes
and their interactions. However, different modellers seem
to be reinventing modelling patterns to solve certain prob-
lems. This paper is meant to raise awareness in the model
building community about the frequently encountered rep-
resentational issues and possible solutions. The suggestions
described in this paper are not prescriptive, but describe pat-
terns that other modellers have found useful. As such, this
paper is different than usual QR papers, since it is not fo-
cussed on algorithms, but instead offers modelling advice.

The paper introduces the groups we have trained the last
few years, explains the representation used in the Garp3 QR
modelling and simulation workbench, describes modelling
and debugging issues and proposes solution patterns.

Modeller training
Three groups of modellers we have trained the last few years
are particularly interesting.
• The first group are the (PhD-level) researchers who partic-

ipated in the NaturNet-Redime EU project. These (non-
computer scientist) domain-experts created models about
ecology topics that they are actively researching.

• The second group are BSc. Future Planet Studies students
who started their first semester of college education. As
such, they had neither advanced computer-science knowl-
edge, nor detailed knowledge about particular domains.

• The final group are PhD-students doing the SIKS research
school Knowledge Modelling course1. Most of them have
backgrounds in fields close to computer-science.
1http://hcs.science.uva.nl/SIKS/Siks2008

The researchers have been working with the Garp3 soft-
ware for about 2,5 years. Their training started at the second
project meeting of the NaturNet-Redime project in Amster-
dam, which consisted of 2 full days of hands-on practical
sessions (including a 2 hour lecture), followed by a single
day of working through the structured approach to building
QR models (Bredeweg et al. 2008) (including a 2 hour lec-
ture). Extra training was given during each following project
meeting, which included a day of assignments and a day of
debugging models in Sofia, a day of using the Sketch en-
vironment and the sharing and reuse functionality (Liem,
Bouwer, and Bredeweg 2007) in Latvia, and a day of col-
laboratively improving the case study models in Germany.
Additionally, the researchers were supported via bi-weekly
Skype/Flashmeetings to discuss modelling issues. The re-
sults are complex models involving multiple interacting pro-
cesses (Sànchez-Marrè et al. 2008).

The BSc. students doing an 8 week conceptual modelling
course were divided in pairs. They spent the first 4 weeks
learning to make Concept Maps (Cañas et al. 2004) and cre-
ating ontologies using Protégé (Knublauch et al. 2004). In
the last 4 weeks the student pairs were learning to create QR
models. The main goal for them was to create a small model
about at least 2 processes relevant to the carbon cycle (and
global warming). In addition to learning the QR technology,
the students were asked to work towards this goal during
these 4 weeks. Each week the students gave a 10-15 minute
presentation about their current modelling progress towards
the carbon cycle models. The students were supposed to
spend about 8-10 hours a week on the course (including the
weekly 3 hour practical session).

In first QR week, a 1 hour lecture was given contrasting
QR models with concept maps and ontologies, explaining
the general ideas of QR, and the applications of QR mod-
els. Following the lecture, the students worked on the Tree
& Shade model (Bredeweg et al. 2006b). Nearly all stu-
dents finished this exercise within the practical session. In
the second QR lecture, the communicating vessels model
(Bredeweg et al. 2006b) was used to explain the key repre-
sentational aspects of QR models such as structure (entities
and configurations), causality (proportionalities and influ-
ences), inequalities, correspondences and model fragments.
In the rest of the session the students worked on recreating
the population interaction model (Bredeweg et al. 2006b),



which took them most of the assigned time. In the last two
weeks, feedback was given on the models presented by stu-
dents. In addition, we gave two extra 2 hour practical ses-
sions to accommodate requests by students. Most students
created excellent models focussing on two processes.2

The PhD students of the SIKS research school doing the
Knowledge Modelling course3 got a 1 hour lecture on QR,
followed by a two hour practical session in which they had
to recreate the Tree & Shade model. The PhD students re-
quired on average about half an hour less time compared to
the BSc. students to finish. This seems mostly to be due
to their computer skills. However, those who also had some
knowledge modelling skills were able to finish the modelling
task the fastest (up to 30 minutes faster compared to the stu-
dents without modelling skills).

QR Modelling and Simulation using Garp3
The introductory QR lectures are supposed to give the au-
dience enough basic knowledge to allow some hands-on ex-
perience creating QR models using the Garp3 workbench4

(Bredeweg et al. 2006a). Garp3 allows modellers to capture
their knowledge about the structure and the important pro-
cesses in their system of interest as model fragments. These
can be considered formalisations of the knowledge that ap-
plies in certain general situations. Model fragments can
be considered rules indicating that if certain model ingredi-
ents are present (conditions), certain other model ingredients
must also apply (consequences). The can be represented as:
conditions⇒ consequences.

Next to model fragments, different scenarios can be mod-
elled. These represent specific start states of a system.
Garp3 can run simulations of models based on a particular
scenario. The result of such a simulation is a state graph, in
which each state represents a particular possible situation of
the system, and the transitions represent the possible ways a
situation can change into another.

The state graph is generated by the simulation engine
roughly as follows. The engine takes a scenario as input, and
finds all the model fragments that apply to that scenario. The
consequences of the matching model fragments are added to
the scenario. The result is a state description including all
consequences. Based on this augmented state description
new knowledge can be inferred, such as the derivatives of
quantities. Given a completed state description, the possible
successor states are inferred. The complete state graph is
generated by applying the reasoning to the new states.

The QR representation has a strict separation between
structure and behaviour. The structure of a system is rep-
resented using entities (objects), agents and configurations
(relations). For example, a lion hunting a zebra can be rep-
resented as two entities (lion and zebra) and a configura-
tion (hunts). If the food web is considered to be the system,
a hunter disturbing this system could be represented as an
agent.

2This type of learning through modelling will be the main topic
of research in the recently started DynaLearn EU project.

3http://hcs.science.uva.nl/SIKS/Siks2008
4http://www.garp3.org

One of the key behavioural model ingredients are quanti-
ties. Quantities represent the features of entities and agents
that change during simulation. A quantity has a magnitude
and a derivative, which represent its current value and trend.
The magnitude and derivative are each defined by a quantity
space that represent the possible values the magnitude and
the derivative can have. Such quantity spaces are defined by
a set of alternating point and interval values.

Mv(Q1) is used to refer to the current value of the mag-
nitude of a quantity. Ms(Q1), the sign of the magnitude,
indicates whether the magnitude is positive, zero or neg-
ative (Ms(Q1) ∈ {+, 0,−}). Dv(Q1) is used to refer to
the current value of the derivative of a quantity, which has
to be a value from the predefined derivative quantity space
(Dv(Q1) ∈ {−, 0, +}). Ds(Q1) is used to refer to the cur-
rent sign of a derivative.

As a shorthand to refer to the current magnitude and cur-
rent derivative value of a quantity at the same time, we use
the notation Q[X,Y], where Q is the quantity, X is the current
magnitude value and Y is the current derivative value. For
example, Size[+,-] indicates that the current size is positive
and decreasing. This combination of the current magnitude
and current derivative value is called the quantity value.

Causality
Important for QR models is the explicit notion of causal-
ity between different quantities. Garp3 represents the causal
dependencies using direct and indirect influences (Forbus
1984). Direct influences, called influences for short, are
represented as Q1

I+→Q2. Influences can be either positive
(as above) or negative. The positive influence will increase
Dv(Q2) if Ms(Q1) = +, decrease it if Ms(Q1) = −, and
have no effect when Ms(Q1) = 0. For a negative influence,
it is the other way around.

The indirect influences, called proportionalities, are rep-
resented as Q1

P+→ Q2. Similar to influences, proportional-
ities can be either positive or negative. The positive pro-
portionality will increase Dv(Q2) if Ds(Q1) = +, have no
effect if it is stable, and decrease if it is below zero. For a
negative proportionality, it is the other way around.

Other Behavioural Ingredients
Other behavioural ingredients essential for qualitative sim-
ulations in Garp3 are operators, inequalities, value as-
signments and correspondences. Operators (+ and -) are
used to calculate the magnitude value of quantities (e.g.
Q1 − Q2 = Q3, to indicate Mv(Q1) − Mv(Q2) =
Mv(Q3)). Inequalities can be placed between differ-
ent model ingredient types: (1) magnitudes (Mv(Q1) =
Mv(Q2))5, (2) derivatives (Dv(Q1) < Dv(Q2), (3) values
Q1(point(Max)) = Q2(point(Max))6, (4) operator rela-

5Even if two quantities have the same qualitative value, they
can still be quantitatively different (different points in the interval).
An inequality can be used to indicate that they also have the same
quantitative values.

6Values with the same name associated with different quanti-
ties do not necessarily have the same value. Points can represent
to different quantitative values (e.g. the maximum heights of two



tions (Mv(Q1)−Mv(Q2) < Mv(Q3)−Mv(Q4), (5) combi-
nations of 1, 2, 3 and 4 (although magnitude and derivative
items cannot be combined in a single expression). Value
assignments simply indicate that a quantity has a certain
qualitative value (Mv(Q1) = Q1(Plus)). Finally, corre-
spondences are used to indicate that for certain values of
one quantity, values of another quantity can be inferred.
There are quantity correspondences (Q1

Q↔Q2) and value
correspondences (Q1(Plus) V→Q2(Plus)), which can both
be either directed or undirected. The value correspondence
indicates that if Mv(Q1) = Q1(Plus) then Mv(Q2) =
Q2(Plus). If the value correspondence is bidirectional, the
reverse inference is also possible. Quantity correspondences
can be considered a set of value correspondences between
each consecutive pair of the values of both quantities. There
are also inverse quantity space correspondences (Q1

Q

Â

↔Q2)
that indicate that the first value in Q1 corresponds to the last
value in Q2, the second to the one before last, and so on.

Modelling Issues
Representing Structure
Entities or quantities? One of the main purposes of con-
ceptual models is communication. QR models make an ex-
plicit distinction between structure and behaviour of a sys-
tem to make models easier to understand. The quantities
describing the behaviour of the system are attached to en-
tities that describe the structure of the system. A balanced
distribution between the number of quantities and the num-
ber of entities (i.e. only a few quantities per entity) improves
the communicative value of a model.

The number of entities in a model should depend on the
importance of those entities in the system. Otherwise they
could be represented as quantities. For example, in the river
restoration models (Sànchez-Marrè et al. 2008) we fre-
quently noticed the use of quantities such as oxygen con-
centration and Particulate Organic Matter (POM) concen-
tration as properties of an entity river. Since the POM and
oxygen do not have important properties of their own for
purposes of this model, they are modelled as quantities (the
concentrations are properties of the river).

However, if we consider algae in the river, there is a mod-
elling choice to be made. Algae can be modelled as an entity
in the system (living in the river), or as a quantity of the river
(Algae concentration). This choice depends on the impor-
tance of the Algae for the processes modelled in the system.
For example, if the photosynthesis or biomass of the algae
is important, Algae should become an entity with these fea-
tures as quantities, since these quantities are features of the
Algae and not of the river.

Configuration naming and direction In the investiga-
tion of the models created the last few years, it became
apparent that in the modelling of the structure of a sys-
tem, naming the configurations and choosing a direction is
often experienced as being an issue. For example, when
population A is preying on population B, is it better to

container do not have to be equal).

formalise this as Population A
preys on−→ Population B, or as

Population B
is preyed on by−→ Population A?

This issue is analogous to writing in either active or pas-
sive voice. In our experience, the passive voice is frequently
used. We propose that the active form should be consis-
tently used for the naming of configurations. This shortens
the configuration names, making the diagrams easier to read.
Furthermore, if text is generated based on the contents of a
model (e.g. a question generator or virtual character explain-
ing the model), the quality of the text will be better.

Relationship reification There are relationships in sys-
tems that are difficult to formalise as configurations, since
there are no verbs to describe them. For example, the Ants’
Garden model (Salles, Bredeweg, and Bensusan 2006) de-
scribes the different interactions that populations can have
with each other, such as commensalism, parasitism, and
symbiosis. For parasitism a configuration parasitises could
be defined, however no such verbs are available for com-
mensalism and symbiosis. Using a configuration lives in
symbiosis with seems suboptimal, since it has a long name
and the direction seems arbitrary since the inverse is also
true. Adding a second configuration to remedy this would
only make the diagram more complex.

Another related issue is representing the speed of these
processes, such as the parasitism rate (or other properties of
the relationship). Assigning this rate (formalised as a quan-
tity) to either of the populations participating in this relation-
ship seems incorrect, as it is determined by the interaction of
these populations, and not one particular population alone.

As a solution to these issues the relationship can be rei-
fied, i.e. represented as an entity. In the Ants’ Garden model,
the symbiosis relationship is described as an entity with sym-
biont 1 and symbiont 2 configuration relationships to the two
populations. Although not in the Ants’ garden model, the
speeds at which these processes operate can be formalised
as quantities attached to the reified relationships.

Representing causality
Choosing a proportionality or influence An important
difficulty we encountered with all three groups is convey-
ing the difference between influences and proportionalities.
Moreover, even after having hands-on experience with cre-
ating models based on exercises, modellers still have trouble
choosing whether to use an influence or a proportionality.

The key concept to understand is that only influences initi-
ate change in a system and that proportionalities only propa-
gate change. Specifically, the magnitude of the source quan-
tity of an influence determines the derivative of the target
quantity. As such, influences only cause change when the
source quantity has a non-zero magnitude value. Propor-
tionalities on the other hand determine the derivative of the
target quantity based on the derivative of the source quantity,
and thus only change the derivative of the target quantity
when the source quantity is not stable.

We propose the following rule of thumb to decide whether
an influence or a proportionality should be used when a
modeller is sure that two quantities are causally linked. First,
assume that the source quantity has a positive magnitude



value, but is stable (i.e. the derivative is zero). If the target
quantity is supposed to change an influence should be used.
Otherwise, a proportionality should be used. The reason this
rule works is that a proportionality does not have an effect
in this setting (since the derivative of the source quantity is
stable), while an influence does since the magnitude of the
source quantity is non-zero.

For example, consider water flowing from a tab into a
bucket. The flow causes the amount of water in the bucket
to increase. Should an influence or proportionality be used?
Consider that the flow is positive but not changing. Since the
amount of water should still increase, an influence should be
used. The same rule of thumb can be used when consider-
ing the causal relation between the amount of water and the
height of the water in the bucket. Consider that the amount
of water is positive but stable. Since the height of the water
should also remain stable, a proportionality should be used.

Causal chains Causal chains often start with an influence
followed by several proportionalities that propagate the ef-
fect. Chains of proportionalities following each other occur
quite often. These kind of causal chains are seen in many
models. In contrast, it is unlikely that there is another in-
fluence in a causal chain. As such, causal chains with influ-
ences in them are more likely to be incorrect. Conceptually
a causal chain should be seen as a process that affects several
causally linked quantities. Other influences should therefore
be part of other causal chains.

A special case of a causal chain is one that con-
tains a loop of proportionalities. For example,
A P+→ B, B P+→ C, C P+→ A. These loops of proportion-
alities should be avoided, as the value of the derivatives of
these quantities can never be derived. The reason is that to
derive the derivative of one of the quantities, the derivative
of the quantity before it has to be known. However, to
determine that derivative, the derivative of the quantity
before that has to be known, etcetera.

Feedback loops A frequently asked question about QR
models is whether feedback loops are supported by QR mod-
els. A feedback loop in a system is a situation in which the
effect of a process will influence this same process. For ex-
ample, the growth of a tree increases the size of the tree, but
the size of the tree also increases the growth rate. Feedback
loops frequently occur in QR models and are one of the most
basic patterns that occur in most models. The mentioned tree
example can be seen in the Tree & Shade model.

A feedback loop is represented in Garp3 by specifying an
influence from a process quantity to a target quantity and a
proportionality from the target quantity to the process quan-
tity. For example, in the Tree & Shade model there is a
positive influence from the growth rate of the tree to the size
of the tree and a positive proportionality from the size of
the tree to the growth rate. This pattern exactly captures the
feedback loop in the system.

Such feedback loops do not have to be direct. There can
be a causal chain from the process quantity through several
quantities with the final quantity providing the feedback to
the process quantity. One such example can be seen in the
communicating vessels model. The flow in the pipe between

two containers has a negative influence on the volume of the
liquid in the container (i.e. the flow reduces the amount of
water). There are positive proportionalities from Volume to
Height and from Height to Pressure to indicate that if volume
changes, height will change in the same direction and if the
height changes, the pressure will also change in the same di-
rection. The feedback is represented in the form of a positive
proportionality from the pressure to the flow. This propor-
tionality indicates that the flow will increase if the pressure
increases and decrease if the pressure decreases (as it will if
water is flowing out of the container).

Causal Interactions As part of each introductory QR lec-
ture we present the audience with a set of exercises in which
two causal dependencies affect the same quantity. A mem-
ber of the audience is asked what the resulting derivative
value will be for the affected quantity. Each of the three
groups of modellers had difficulty in deriving the correct
derivative and explaining the result.

The exercises start with an exercise that tests whether the
audience has understood the semantics of the causal depen-
dencies. An example exercise is Q1[−, 0] I−→Q2[+, ?]. The
audience has to indicate that Q2 will decrease, since the
magnitude of Q1 is negative and it affects Q2 though a nega-
tive influence. Several of the people in the audience are able
to correctly derive the correct result and explain it to the rest
of the audience.

In the following exercises the audience has to
derive the derivative of the quantity that is af-
fected by two causal dependencies. For example,
Q1[−,−] I+→Q2[+, ?] I−←Q3[−,−]. The correct an-
swer here is that the derivative of Q2 is ambiguous. The
reasoning is as follows. Q1 has a negative magnitude which
results in a negative effect on Q2 through the positive
influence. Q3 has a negative magnitude value but influences
Q2 through a negative influence. As a result the effect on
Q2 is positive. Given that there is a positive and a negative
result on Q2 the result is ambiguous.

Although not explained during the lecture, in more ad-
vanced modelling the ambiguity of this kinds of examples
can be resolved by adding inequality knowledge. For exam-
ple, knowing that Mv(Q1) > Mv(Q3) allows us to derive
a unique derivative value. Since the negative effect of the
positive influence from Q1 is smaller (less negative) than
the positive effect of the negative influence from Q3 (more
negative), Q2 will increase.
Dealing with multiple competing causal dependencies
Many real-world problems involve multiple processes
affecting single quantities. Although two competing
influences of different types can be determined through a
single inequality (see previous section), the more general
case with multiple causal dependencies is more intricate.
Consider two influences of the same type (both positive or
both negative) affecting a single quantity, for example, the
effects of release of CO2 from the ocean (which can be
negative to model the absorption of CO2) and the burning
of fossils fuels on the CO2 concentration in the air. Given
release[−, +] I+→ concentration[+, ?] I+← burning[+, +],



the derivative value of concentration is ambiguous.
Inequality knowledge between concentration and burn-

ing with not resolve the ambiguity. The knowledge that is
needed is whether the absolute magnitude value of release is
bigger or smaller than the absolute magnitude value of burn-
ing. In the former case, Dv(concentration) = +, while
in the latter case Dv(concentration) = −. However, such
representing absolute values and reasoning with them has
not been solved in Garp3 yet.

A general pattern that can be used instead is specify-
ing an inequality between the sum of all quantities with
positive effect and the sum of all quantities with nega-
tive effects. In the example, the knowledge release +
burning < 0 allow us to infer Dv(concentration) =
−. If we also consider the effects of photosynthesis
(photosynthesis I−→ concentration), we can again resolve
the ambiguity by specifying the inequality release +
burning < photosynthesis (Dv(concentration) = −).
This pattern allows modellers to specify what the result on
the influenced quantity will be given a set of magnitude val-
ues (as conditions) of the processes.7

Correspondences as causality Correspondences are used
to ensure that magnitude values always occur together. They
are often paired with proportionalities. The correspondence
assures that the magnitude values of the quantities always
co-occur, while the proportionality ensures that the deriva-
tive values are equivalent (assuming there are no other causal
dependencies on the quantity). In the case that there are mul-
tiple causal dependencies on the target quantity, a correspon-
dence might be to strict.

Correspondences can be either directional or bidirec-
tional. Directional correspondences are important when the
magnitude value of one quantity can be inferred from an-
other quantity, but not the other way around. For example,
when the size of a population is zero, the birth rate should
be zero, but the birth rate can be zero with positive popula-
tion size. An example of a bidirectional correspondence is
between the size of a population and their biomass.

Establishing Quantity Spaces
The selection of suitable quantity spaces for quantities is ex-
perienced as being a difficult task even by experienced mod-
ellers. A quantity space should contain just the right amount
of distinctive values necessary to model the behaviour of that
particular quantity in a qualitatively meaningful way. Inher-
ent in this choice is the purpose of the model. For exam-
ple, when modelling the effect of phytoplankton concentra-
tion on the amount of light it absorbs, modelling the critical
concentration value when the other primary producers un-
derneath them become significantly deprived of light in the
quantity space is important. However, when modelling the
effects of global warming on phytoplankton, this value is
less important and could be left out of the model.

7When a quantity is affected by both a proportionality and an
influence with opposing effects, the result is always ambiguous.
Consequently, we argue that mixing different types of causal de-
pendencies should be avoided. This rule is known as the homoge-
neous influences adequacy constraint (Rickel and Porter 1997).

When choosing a quantity space it is important to deter-
mine the qualitative distinct values a quantity can take that
might cause a change in behaviour. This means thinking
of particular value ranges in which a certain behaviour of
the system takes place. These ranges are bounded by par-
ticular points that represent the thresholds between these
ranges. This is the reason that quantity spaces in the QR rep-
resentation consist of consecutively intervals (ranges) and
points. In the above example about light, the concentration
of phytoplankton could either be: no plankton, some plank-
ton, a threshold representing the critical amount of plankton,
and more than the critical concentration of plankton (e.g.
{point(zero), positive, point(critical), hazardous}.

Note that the choice of the quantity space {zero, low,
point(medium), high} for, for example, the size of a popula-
tion is not ideal if medium is thought of as an interval (like
low and high). Firstly, there seems to be no clear reason
why this distinction is important from a behavioural point
of view. Secondly, medium becomes a point value in this
quantity space, and the behavioural properties of points are
quite different than those of intervals. As a result certain
behaviours of the system will not be simulated. The main
reason for this is the epsilon ordering concept (de Kleer and
Brown 1984), which indicates that changes from a point to
an interval always have precedence over a change from an
interval to a point. This means that a changing quantity can
remain having the same interval magnitude value in consec-
utive states, but a changing quantity that is in a point value
must change to the next magnitude value in the next state.

Consider two growing populations with size low. Given
the quantity space discussed above there are only three pos-
sible behaviour paths. From the first state, there are three
possible options, either the first population reaches medium
first, the second population reaches medium first, or they
reach medium simultaneously. Since medium is a point
value, it is not possible for the population that is still low
to reach medium before the other population has reached
high, due to the epsilon ordering rule. As such, this possi-
ble behaviour is not captured in the model. Consequently,
we argue that the choice for this quantity space should be
avoided, and that in general modellers should make sure not
to model intervals as points.

Actuator Patterns
Although conceptually changes in systems should either be
caused by processes active in the system or by forces out-
side the system, there are several technical ways to initiate
change within a QR model. For instance, it is possible to
indicate that a certain quantity is always increasing. Several
frequently occurring patterns can be used to initiate change
in a QR model. We call these actuator patterns, since they
put the system into action.

Process actuator Processes represent the causes of
change within a system. Consider the Growth process
(Growth I+→Size in a process model fragment Growth) rep-
resented in the Tree & Shade model. There are three varia-
tions of this actuator that are commonly used. In the simplest
variation, the growth rate is simply assigned a positive mag-



nitude and a stable derivative through consequential value
assignments. A drawback is that the growth of the tree can-
not change and can never become zero. To resolve this issue,
in the second variation a feedback is added between the size
of the tree and its growth rate (Size P+→ Growth). Conse-
quently, no value assignments are needed in the model frag-
ment, except a start value for the growth rate in the scenario.
The third variation removes the need for the value assign-
ment in the scenario. In the Growth model fragment a corre-
spondence is added to indicate that a non-existing tree does
not grow (Size(zero) V→Growth(zero)). Furthermore, a
child model fragment is created that indicates that all trees
grow (Mv(Size) > zero⇒Mv(Growth) > zero).

External Actuator Pattern and Exogenous Behaviour
The external actuator pattern models processes or effects
of processes from outside the system. The patterns con-
sists of an agent representing the source of the effect, and
an associated quantity which represents an exogenous vari-
able. ”Human modelers treat a variable as exogenous only
if it is approximately independent of the other variables in
the model.” (Rickel and Porter 1997). Garp3 allows ex-
ogenous behaviour to be specified for exogenous quantities
(Bredeweg, Salles, and Nuttle 2007), which allows mod-
ellers to indicate that a quantity remains constant, is increas-
ing, decreasing or steady, or has sinusoidal or random be-
haviour. Sinusoidal behaviour is used for cycles, such as
day-night cycles, tides (monthly), and precipitation (yearly),
while random behaviour is used for quantity behaviour that
a modeller is unsure of and might unexpectedly change (e.g.
rainfall over a shorter period of time).

There are two variants of the external actuator pattern. To
model an external process (fully determined by forces out-
side the system) a quantity is combined with an influence.
The influencing exogenous quantity tends to be set using a
value assignment (as in the process actuator pattern), with
either the derivative being set or determined by a feedback
relationship. The second variant models the effects of ex-
ternal processes using an exogenous quantity and a propor-
tionality. These external processes are often determined by
giving the quantity an exogenous behaviour.

The choice between the two variants depends on what the
exogenous quantity should do. For example, when the ex-
ogenous quantity fully determines a quantity in the system
(e.g. with two corresponding large quantity spaces), this is
modelled using a proportionality. For example, the nutri-
ent run-off caused by farming fully determines the nutrient
level in the Danube river and delta, and the average ambient
temperature of the surrounding land determines the temper-
ature in the river and delta (Sànchez-Marrè et al. 2008). In
contrast, an exogenous process is used when an important
process has to be modelled. For example, a fishery manager
stocking young salmon in a river, or economical develop-
ment activities increasing the number of anglers (Sànchez-
Marrè et al. 2008).

Equilibrium Seeking Mechanisms The equilibrium
seeking mechanism pattern models equalizing flows due
to a potential difference. For example, energy exchange
between two objects with different temperatures, or a

liquid flow equalizing the pressures in the communi-
cating vessels system. Key in this pattern is the flow,
which is determined by the difference between two
state variables, e.g. of the temperatures of two objects
(Temperature1 − Temperature2 = Heat flow). The
heat flow reduces the heat from one object, and transfers
it to the other (Flow I−→Heat1, F low I+→Heat2). Fi-
nally, the two state variables determining the flow also
determine the derivative of the flow. If the tempera-
ture of the first object increases, the flow will increase
(Temperature1 P+→ Heat F low), while if the temperature
of the second object would increase, the flow would
decrease (Temperature2 P−→ Heat flow). In the commu-
nicating vessels model, the pressure quantities determine
the flow, while the flow changes the volumes of the water in
the containers through influences.

Competing Processes The competing processes pattern
consists of multiple interacting influences that model com-
peting processes. There are at least two processes, such
as the birth and death rate of a population, or more such
as its immigration and emigration rates. The processes in-
fluence a single quantity, in this case the size of the pop-
ulation (Birthrate I+→Size,Deathrate I−→Size). There
are also feedbacks: a larger population means a larger
birth rate (Size P+→ Birthrate) and a larger death rate
(Size P+→ Deathrate). More details on how to deal with
these kind of interactions is explained in the Sections Causal
interactions and Dealing with multiple competing causal de-
pendencies. The mentioned examples come from the ’Single
population model with basic processes’ model which is pro-
vided with the Ants’ Garden model.

Issues when Running Simulations
Maximum simulation result Modellers often ask why
their QR models generate so many states. One of the main
reasons this question is asked is because modellers tend to
underestimate the number of states a QR model can poten-
tially generate. The maximum number of states that a model
can generate is equal to the Cartesian product of all the quan-
tity spaces of all the quantities in a model. So a model with
10 quantities with three possible magnitude values can gen-
erate at most (3x3)10 = 3486784401 states, which is the
number of magnitude values times the number of derivative
values raised to the power of the number of quantities. As
such, adding one quantity more to a model can potentially
mean almost an order of magnitude more states (number of
potential magnitude values times the number of derivative
values). Note that this number includes only the possible dif-
ferent states due to different magnitude and derivative values
and does not include different states due to different inequal-
ities. So even more states are possible.

Successor states without correspondences A frequently
seen reason for a large number of states is non-
corresponding quantities. Consider that all changing quan-
tities in a point value will change to an interval value in the
next state due to the epsilon ordering rule (which states that
changes from a point value to an interval are immediate).



Given a state in which quantities all have interval values, of-
ten a large number of successor states result if the quantities
do not correspond in certain way. The reason is that for each
quantity it is possible for it to either change or remain the
same. Consequently, there is a successor state for each com-
bination of changing or not changing quantities. The number
of combinations for such binary variables is 2n, however the
combination in which no quantities change is not a successor
but the state itself. As such, for a single state the number of
successors s given a number on non-corresponding chang-
ing quantities q can be calculated though s = 2q − 1.
Constraining behaviour Given that a model potentially
results in an unusable large state graph, it is essential that its
behaviour is constrained. Technically all behavioural rela-
tionships between quantities constraint behaviour, however
correspondences and proportionalities are especially appro-
priate. Given two non-corresponding quantities, each com-
bination of magnitude values is possible. Adding a corre-
spondence assures that only each corresponding pair of val-
ues is possible. Also adding a proportionality removes the
potential of the two quantities changing independently of
each other (given that there is no other causal dependency
on the targeted quantity). This combination of ingredients
makes quantities behave equivalently, and thus allows them
to be counted as a single quantity for purposes of determin-
ing the maximum number of states.

Inequality statements also help constrain the behaviour.8
For example, specifying that the birth and death rates are
above zero when the population size is above zero re-
moves behaviour. For purposes of simulation it might also
be insightful to specify fixed values or ranges for quan-
tities. These are modelled by adding new model frag-
ments that indicate that if a specific assumption holds cer-
tain (in)equalities hold for quantities. For example, in the
R-star model (Nuttle, Bredeweg, and Salles 2005), when
the assumption ’Limited resource build-up’ holds, the re-
sources available to the plant population are smaller or equal
to medium.
Inactive model fragments Modellers frequently ask why
certain model fragments do not become active during their
simulations. Modellers usually know that the reason is that
certain conditions in their model fragment are not fulfilled
by the state. However, their real question is how they can
determine which conditions are not fulfilled. In many cases
we encountered that there is a mismatch between the model
fragment and the state (or scenario). For example, the direc-
tion of a configuration is reversed. Our advice is to rebuild
the state as a scenario and try to run the simulation. Usually
the inconsistency is detected in this process. In the other
cases the scenario can be changed to determine what the in-
consistency is.

8Modellers should take note that constraints should make sense
for a domain perspective. For example, when a heater heats a pan,
the heat of the heater cannot be set to stable, as this would make
it impossible for the heat flow process to take heat from the heater.
To make the stable heat possible, there should be at least another
competing process that adds heat to the heater.

No states Beginning modellers often find it difficult to
solve simulation results with no states. Having no states al-
ways means at least one model fragment was considered.
Otherwise the simulation result would consist of at least one
state which corresponds to the scenario. The inconsistency
is caused either by the scenario and a matching model frag-
ment, or by a combination of matching model fragments.
The easiest way to find the inconsistency is by making all
model fragments inactive. Consequently, there should be at
least one state corresponding to the scenario. Model frag-
ments can be activated one by one to detect the model frag-
ment that causes the inconsistency.

Not all expected states Sometimes simulations do not
generate all the expected states. Our advice to improve the
model is creating a scenario that corresponds to the expected
state. If the simulation results in no states there is an incon-
sistency that has to be resolved.Then, modellers should cre-
ate a scenario that represents a predecessor state and deter-
mine if both these desired states are generated9. By working
backwards in this way towards an already generated state
allows the desired branch of behaviour to be simulated.

Inconsistencies Inconsistencies are caused by inconsis-
tent inequalities. Determining which inequalities are incon-
sistent is a difficult issue and a topic on its own. The follow-
ing is a list of sources of inequalities that should be checked
when searching for the reason of an inconsistency.

• Magnitude (or derivative) value assignments in model
fragments (or scenarios).

• Inequalities explicitly represented in model fragments or
scenarios.

• Inequalities resulting from the calculations of operators
(plus or minus). These calculations result in an inequal-
ity indicating that a quantity has a certain magnitude (or
derivative) greater, smaller or equal to a specific value.

• Value assignments caused by correspondences. When a
quantity A has a certain value, the corresponding quantity
B also has to have that specific value.

• Value assignments resulting from influence resolution.
The result of resolving of influences and proportionalities
is a set of value assignments indicating whether quantities
are increasing, stable or decreasing.

• Value assignments resulting from advanced (exogenous)
quantity behaviour. It is possible to specify advanced
quantity behaviour for specific quantities in scenarios. For
example, a quantity can increase, change randomly, or
move as a sinus. This behaviour sets the derivative of
the quantity. It is also possible to generate all the possible
magnitudes of a quantity.

• Another source of facts are engine rules. These rules in-
dicate what is possible in a simulation results, and always
apply. Engine rules impose these constraints by imposing
inequalities. The most important rules to consider are the
quantity constraints and the continuity constraints.
9Showing termination nodes (potential successor states) is help-

ful here.



• The quantity constraints simply specifies that each quan-
tity space has to have a value within its quantity space.
This is usually represented by two inequalities. The first
indicates that it has a value greater or equal to its top
value, and the second indicates that it has a value smaller
or equal to its top value.

• The continuity constraints is a transition rule that in-
dicates that a magnitude or derivative has to gradually
change, e.g. a derivative cannot change from increasing
to decreasing without passing though stable. For a deriva-
tive this would result in an inequality that indicates that
the derivative in smaller or equal to zero when a quantity
is decreasing. An example of when the continuity rule
can cause conflicts is when one of a pair of opposing in-
fluences disappears.

• A special source of inequalities are the simulation pref-
erences. These simulation preferences can be changed in
the simulation preferences window. The most notable to
consider are the two extreme values rules.

– The ’Apply quantity space constraints on extreme val-
ues’ rule indicates that the derivative of quantities has
to be smaller or equal to zero (cannot increase) in their
top magnitude value (if it is a point), and is greater or
equal to zero (cannot decrease) in their bottom mag-
nitude value (if it is a point). This rule applies to all
extreme point values except zero.

– The ’Apply quantity space constrains on zero as ex-
treme value’ applies the ’Apply quantity space con-
strains on extreme values’ rule for zero as an extreme
point value.

Conclusions and Future Work
This paper identifies frequently occurring model building is-
sues, misconceptions and suboptimal modelling, and pro-
vides solutions, patterns and modelling advice. The issues
and patterns originate from well-established models made
by the groups we have trained over the last few years. We
aim to contribute to the building of qualitative models rais-
ing awareness about the issues with model builders and pro-
viding them with the means to resolve them. In the coming
years we will focus on providing better software support on
resolving the presented issues and making frequently used
patterns easier to represent.
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