
Modeling for Fault Localization in Data Warehouse Applications

 1Peter Struss, 2Vikas Shivashankar, 3Mohamed Zahoor

1Technische Universität München, Germany, struss@in.tum.de, 2IIT Madras, Chennai, India,
3Ericsson India Private Limited, Chennai, India

Abstract
The paper describes first results of an attempt to develop a
general tool for localizing faults in applications of data
warehouse technology. Genericity is achieved by a model-
based approach: a model of the application is configured
from a library of models of standard (types of) modules and
exploited by a consistency-based diagnosis algorithm,
originally used for diagnosing physical devices. In order to
obtain discriminating interdependencies, the behavior
description in the models is stratified according to different
roles and processing of the various types of the data and
captures the potential impact of faults of process steps and
data transfer on the data as well as on sets of data.
Reflecting the nature of the initial symptoms and of the
potential checks, these descriptions are stated at a
qualitative level. In the current solution, the symptoms are
assumed to stem from human assessment of reports
generated from the data ware house, while checks can be
inspection of the data base or other persistent data and
rerunning certain process steps. The solution has been
validated in customer report generation of a provider of
mobile phone services.

1. Introduction

One of the most urgent needs these days is to effectively
support debugging of software, which becomes an ever
increasing factor to determine both the industrial and
commercial sphere and our personal lives. One of the most
successful techniques of model-based problem solving is
component-oriented consistency-based diagnosis (see
[Struss 08]). Exploiting this technology, which has helped
to localize and identify faults in devices, for software
debugging has been pursued for quite some time (see
[Struss 08] for some references).
There are a number of obstacles that hamper a
straightforward transfer of consistency-based diagnosis
techniques to software debugging. The most fundamental
one is the difference between diagnosis of (well-designed)
artifacts and debugging of software: while the former aims
at identifying or localizing the deviation of a faulty
realization from a correct design, the latter is concerned
with identifying or localizing the reason why an incorrect
design fails to meet the specification.
The second obstacle is modeling itself: at the code level, a
component-oriented model becomes too complex and
prevents a solution to scaling up to interesting programs,
whereas at a very high level of software modules, the

models tend to become very specific and are not reusable
across different problem instances, which results in a
(usually inhibitive) high cost of modeling.
Thirdly, while modeling the possible faults is often
straightforward for physical systems (a shorted resistor is
consistent with an increased current, but an open one is
not), modeling faults in software is usually infeasible,
because the space of programmers’ faults is infinite.
The work we presented here is guided by the idea that
classes of certain standardized software applications may
help to overcome the abovementioned obstacles by
providing an intermediate level of abstraction that allows
for reusable models of standard software modules and,
especially for generic fault models – an approach we have
not encountered in the existing literature on model-based
software debugging.
In this paper, we address fault localization in data
warehouse applications as an instance of such a class of
standardized software applications.
The next section introduces the foundations of this
application area and describes our specific project: a data
warehouse application of a communication network
provider in India. After a brief characterization of
component-oriented consistency-based diagnosis, section 4
presents the core contribution of this paper, the foundations
and examples of generic models for debugging of data
warehouse applications. We then present the specialization
to an application in customer report generation of a
provider of mobile phone services (section 6) and discuss
the results of an initial validation of the approach and
future work.

2. Application Domain: Data Warehousing

2.1 General Background
Data Warehousing and On-Line Analytical Processing
(OLAP) are essential elements in decision support systems.
Nowadays, there is a need to not only manage huge
amounts of data, but also an equally, if not more, important
requirement of analyzing this data and extracting useful
information, and data warehousing technologies support
this. Many commercial products and tools in this area are
now available, aiming at enabling faster and more
informed decision making.

A data warehouse is a “subject-oriented, integrated, time-
varying, non-volatile collection of data that is used
primarily in organizational decision making.”[Inmon 92].
The aim of data warehousing technologies is different from
that of operational databases, which typically take care of
day-to-day transactions. Unlike the latter, the focus in data

warehousing is decision support, and, hence, summarized
and consolidated data are more important than individual
records. Data warehouses are orders of magnitude larger
than typical databases and their main bottleneck is in
answering complex ad-hoc queries involving scans, joins
and aggregations typically over millions of records.
Therefore, data warehousing technologies are becoming
more sophisticated, complex and, as a result, more fault-
prone, as well.

The general architecture of a data warehousing system is as
shown in Figure 1 [Chaudhuri 97]. The major modules in
such a system are:

• Pre-processing – This set of modules deals with the
cleaning of data, normalization of certain fields and
other pre-processing methods needed to bring the data
to a common standard format.

• Loading of the data warehouse – This deals with the
loading of the pre-processed data appropriately into
the warehouse.

• Summarization and consolidation using data marts –
This includes aggregating and consolidating the
warehouse data and storing it into customized
databases called data marts.

Therefore, a typical cycle in a Data Warehousing
application is:

• Arrival of new data

• Pre-processing of the data

• Loading into the data warehouse

• Consolidation of new data with old data

• Storing consolidated data into data marts

2.2 Report Generation Based on Call Data
The report generation tool is a system (Figure 2) used to
generate useful information from consumer usage records
known as Call Data Records (CDR). The CDRs are
generated by a number of network nodes operating in
different regions and contain data such as duration of the
call (in case of normal calls), data volume transferred (in
case of a GPRS call), source and destination numbers,
cost of the call, location identifiers of source and
destination regions. The data is subject to various pre-
processing steps in the Data Warehousing System (DWS)
and then loaded into the data warehouse.
Extract-transform-and-load operations are then applied to
the warehouse data to obtain customized figures, such as
countrywide aggregate revenue for a given time period
(e.g. a month), total revenue from a particular region,
number of active subscribers in a given region, the liability
of the service providers to the customers, the region-wise
distribution of network usage etc., which are then stored in
specialized data warehouses known as data marts.

Figure 2: Process diagram of a report generation
system based on call data

Figure 1 Architecture of a generic data warehouse
system

Updates to the data marts are typically done on a daily
basis. From the data marts customized reports are
generated. For instance, the balance report shows the total
account balance of the subscriber base on a given date, thus
used for reporting the operator’s liability.
Another example is the customer usage report, which
gives information about the usage statistics of the customer
base for a given period of time, both for voice as well as
GPRS calls.
A detailed process diagram is as shown in Figure 2. Once a
CDR file is received from the source nodes, the mediation
module processes it and renames the CDR file, assigning it
a unique sequence number. After this, the CDR file is
transferred via FTP to the transformation system for
further pre-processing.
The collection engine of the transformation system
monitors the directories for any incoming CDRs from the
mediation system. Once a file of CDRs is received, the
engine transforms each CDR into an internal data structure
in the value decoding module. The processing engine
checks the CDR for mandatory fields, the normalization
module normalizes all numbers to a uniform format, and
the categorization stage attaches tags to the CDR based on
values of certain fields, such as tagging the records as
local, national or international according to the source and
destination numbers. The aggregation step performs the
combination of multiple fields into one, deriving a new
field based on certain existing fields etc. For instance, this
step combines the local timestamp field and the time zone
information in the CDR to generate a UTC timestamp. The
CDR is now stored in another data structure and passed
onto the distribution engine, which transfers all processed
CDRs from the data structure to an output file. Once this is
done for all the CDRs, they are stored into the data
warehouse.
Extract-transform-and-load operations are carried out
periodically on the data warehouse to populate customized
consolidated values into the data marts. There are different
kinds of data marts based on their functionality, such as
financial, usage-level and subscriber-life-cycle data marts.
The consolidated values in the data marts are then
visualized using a customized report generation system as
shown in Figure 2.
During the various processing and transfer steps, data can
be corrupted in many ways and lead to missing or wrong
data stored in the data warehouse and/or the data marts or
appearing in the reports. For instance, a breakdown in the
network connectivity during the transfer of CDRs into the
warehouse might lead to incomplete data in the warehouse,
thus leading to faults downstream. Usually, such defects
are not detected until some results in the reports are
identified as obviously incorrect, e.g. the total revenue for
a time period being orders of magnitude smaller or larger
than expected. Localizing the cause for this deviation in the
entire process chain can be a tedious and time-consuming
task for the staff. Some reasons for this are frequent
changes in the structure and modules of the system, the fact

that most intermediate results are not persistent and high
efforts to rerun parts of the process.
The following is a typical fault scenario encountered in the
application where the total number of active subscribers
in the system according to a generated report was not
matching the expected value. To check whether the fault
was produced during report generation, the data marts were
inspected. When the same error was found in the data
marts (thus implying that the fault was created upstream in
the process), the warehouse data was then checked for
errors. When the warehouse data was found to be OK (and
yet the value in the data marts was wrong), it was
concluded that there is an error with the set retrieval
module logic. The code, after being checked, was indeed
found to be buggy.

3. Component-oriented Consistency-based
Diagnosis

The description of the system and the task suggests a
perspective of “Localizing the fault in one component of
the system as the possible cause of its misbehavior”.
Component-oriented consistency-based diagnosis (see
[Struss 08]) has been developed as a solution to diagnosis
of a broad class of physical artifacts. In a nutshell, it can
be informally described as follows: the behavior of each
component (type) of a system is modeled in a context-
independent manner. Each component Cj can be in one of
different behavior modes modei(Cj). The correct or
intended behavior mode (OK) is one of them, and others
are either simply its negation or a list of specific (classes
of) misbehaviors (such as “open” or “shorted” for a
resistor). An overall system model is (automatically)
configured according to the system structure (i.e. the
interconnectivity of the components) for a mode
assignment
 MA = {modei(Cj)},
which specifies a unique behavior mode for each
component.
A diagnosis is obtained as a mode assignment MA whose
model is consistent with the observations:
 MODEL(MA) ∪ OBS/ ⊥ .
Even if only the OK modes have an associated model, this
yields fault localization. If models of the various fault
modes exist, then fault identification can be performed and
fault localization can be more confined.
Despite a number of obstacles, that were mentioned in the
introduction, the principles and techniques of component-
oriented consistency-based diagnosis can be exploited for
fault localization in programs under certain conditions.

4. Diagnostic Model of Data Warehouse
Applications

4.1 The Main Ideas
The overall process described in section 2.2 is a sequence
of steps all data have to go through to ultimately yield a
result in a report. If a wrong result is detected, each of
these steps may be suspected to have caused it. A
straightforward application of consistency-based diagnosis
as described in section 3 (with each step modeled as a
component in a linear structure) will produce exactly this
result. Both for a human and a (semi-)automatic debugging
aid, there are three basic ways to reduce the set of
diagnostic candidates and finally obtain a fault localization:

• Collect more observations. In our application, this
means checking intermediate data. Besides the data
warehouse and the data marts, the only persistent data
are the output of the mediation system. Inspecting
more intermediate results requires re-running the
steps, which is time-consuming and should be done
only after having confined the location of the fault as
precisely as possible by the following means.

• Use fault models. In contrast to physical systems, it is
impossible to find a small set of models covering the
abnormal behavior of pieces of software in the general
case. However, at the abstract level of the functional
description of a data warehouse application, it
becomes feasible to describe some plausible improper
behaviors of a module. This becomes even more
powerful together with the third step.

• Refine the structure. This is achieved by stratifying the
data according to their type and role in the process.
Different steps affect different fields of the record, and
so do faults in these steps. For instance, a bug in
normalization of a temporal representation may
corrupt the time information, but leaves location
information unchanged. And an incomplete
transmission of data truncates a set of records, but
leaves the content unmodified.

The last example illustrates the need to not only model the
manipulation of the content of records, but explicitly
represent and propagate properties of record sets. If the
record, say, for a particular day is incomplete, then
summing up some numerical information will yield a
number which is too small.
This in turn motivates the modeling principle chosen: the
models capture the deviation of properties of data fields
or sets from those that would have been obtained if
everything had worked as planned. Starting from an
observed deviation of some report result, the system is
going to identify models of the entire process that are
consistent with this deviation. In this abstract
representation, the references for the deviations remain
implicit and dependent on the context: they are given by
whatever are the outputs of the various steps that the
respective report result depends on.

4.2 Partitioning of the Data
In this section, we present a general principle for
partitioning the data for the debugging purpose. The
rationale behind this is the fact that software modules only
refer to certain parts of the data and also modify only
certain fields on the data. Therefore, each module induces
a partition of the data fields, basically into relevant and
irrelevant to the function of the module. Relevant fields
are those that are either referred to or modified by the
module. Our strategy is, therefore, to construct a global
partitioning that respects all local partitions.

This can be formalized as follows: For each module M i and
fields fj ⊂ F from the data records:

 A i is the set of fields fj ∈ F of the input whose content
may affect the result, both under normal and abnormal
behavior,

 Ei is the set of fields fj ∈ F of the output that are effects
of the processing of the module under normal and
abnormal behavior.

In addition, each field fj ∈ F has a type T(fj) which
influences the (description of the) potential deviations that
it can exhibit such as Numerical, String etc. (see
following subsection).

Based on the local partitioning are found, the global
partitioning is defined as the one that respects all local
partitions and the type, with the partitions being maximal:

 ∃ k, fl, fm ∈ Pk ⇔ (∀i (fl ∈ Ai ⇔ fm ∈ Ai)

 ∧ (fl ∈ Ei ⇔ fm ∈ Ei))

 ∧ (T(fl) = T(fm)))

For example, in case of the aggregation module, Ai
represents the fields that are aggregated and Ei the
aggregated field. Similarly, for the retrieval module, Ai are
the keys to the query while Ei comprises the selected
output fields.

4.3 Types of Fields and their Domains
The data fields and the data occurring in the query and
report generation steps are categorized into numerical
(such as duration of a call in our application), categorical
(such as source and destination phone numbers), and string
(such as a database query). We use the following domains,
which capture the deviation of an actual value of a
variable, X, from some reference value, Xref:

Numerical = {Ok, -, --, +, ++, oppSign}, where
• Ok if X = Xref
• oppSign if (X * X ref < 0)
• - if (X * Xref >= 0) ∧ (X < Xref)
 ∧ ¬ (X << Xref)
• -- if (X * Xref >= 0) ∧ (X << Xref)
• + if (X * Xref >= 0) ∧ (X > Xref)
 ∧ ¬ (X >> Xref)
• ++ if (X * Xref >= 0) ∧ (X >> Xref)

Categorical = {Ok, Wrong}, where
• Ok if X = Xref
• Wrong if X ≠ Xref

String = {Ok, Null, Wrong, SynWrong},where
• Ok if X = Xref
• Null if (X = null) ∧ ¬ (X = Xref)
• Wrong if ¬ (X = null) ∧ ¬ (X = Xref) ∧ (X

is valid)

• SynWrong if ¬ (X = null) ∧ ¬ (X = Xref)
 ∧ ¬ (X is valid)
The motivation for valid, invalid and null strings is
predominantly to capture features of database queries:
valid strings are those which are syntactically correct (i.e.
which will execute without an exception on a database),
whereas invalid strings are those which will result in an
error when executed on a database. Null strings are also
used to handle the case when the string construction
module failed completely, resulting in an empty string.

As explained above, the model also captures explicitly how
a set of data, DS, which is processed, is related to the data
that should be processed in the proper process, DSref. The
domain of the respective variable is

Set = {Ok, Empty, Subset, Superset, Wrong}, where
• Ok if DS = DSref
• Empty if (DS = {}) ∧ ¬ (DS = DSref)
• Subset if ¬ (DS = {}) ∧ (DS ⊂ DSref)
• Superset if ¬ (DS = {}) ∧ (DS ⊃ DSref)
• Wrong if ¬ (DS ⊂ DSref) ∧ ¬ (DSref ⊂ DS)
 ∧ ¬ (DS = DSref)

4.4 Models
Once the stratification of data into appropriate groups is
established, models of individual components capturing
both the desired and possible faulty behaviors can be
designed, capturing the information about how a
component treats the abovementioned partitions of a
record. In the following, we present some examples from
the model library.

File transfer component. If we consider the File Transfer
component (which, in our application, handles the transfer
of files containing CDRs across a network), we know that
only the ‘record set’ property can be affected, i.e. if the
transfer is not successful, either the file transfer was
incomplete (nevertheless preserving the integrity of an
individual record) or nothing at all was transferred,
resulting in a completely unsuccessful transfer. A full
description of the model of this component is shown in
Table 1.

As can be observed from the table, in the OK mode of the
component, the set property of the CDR file is simply
propagated, i.e. output of the component is identical to its
input.

Table 1 : Model of the File transfer Component

STATUS Input.set Output.set

Ok Ok

Wrong Wrong

Empty Empty

Subset Subset

OK

Superset Superset

* Subset

* Empty

CONNECTION
DISRUPTED

Superset Wrong

Table 2: Model of the Query construction Component

STATUS qStrTemplate qCriteria qString

Ok Ok Ok

Ok Wrong Wrong

Wrong * Wrong

OK

Wrong * SynWrong

* * Wrong FAULTY

* * SynWrong

However, in the fault mode when the FTP connection is
broken, the model captures the fact that no matter what the
nature of the input, the output could be either a Subset of
the original data (resulting from a partial loss in
connectivity) or an Empty set (resulting from a complete
loss of connectivity). In addition, if the input is a
Superset, the output after truncation can be a Wrong set
(which means, we ignore the highly unlikely case that
transaction incidentally produces the proper set).

However, an assumption made while building this model is
that the file transfer component never spoils the integrity of
the data and only can disrupt the set property, which is
indeed true in our case study.

In our application,this model is used in different places in
the process: the data transfer to the transformation system
and the transfer into the data warehouse.

Query construction component. This takes as input a
query template, qStringTemplate, with placeholders for
variables and categorical variables, qCriteria containing
values for these placeholders, and produces a query string,
qString. It is used to construct queries automatically in
order to retrieve desired information from the data
warehouse. The model of this component is described in
Table 2. In the OK mode of operation, if both inputs are
Ok, the output is Ok. If not, the output takes appropriate
values for different input cases as shown in the table.
In the FAULTY mode of operation, no matter what the
values of the input are, the output string can take the values
Wrong or SynWrong.
Set retrieval component. As a final example, we consider
the component that retrieves relevant data from the data
warehouse for a particular operation (e.g. to calculate total

revenue for a particular period, this module extracts the
per-CDR revenue data) which then may be given as input
to a module that performs an operation on this data (such
as the summation component). The inputs to this
component are the query string for the actual retrieval,
qString, the data set on which the query operates,
inputSet, and selectKey, which determines the required
field (e.g. the revenue per CDR) and generates the relevant
subset of data, outputSet. A complete description of the
model is given in Table 3.
In a similar manner, the other components are modeled,
capturing both the normal and deviant behavior with
appropriate fault modes.

It should be noted as an important disadvantage that the
global partitioning, being dependent on the local ones, may
have to be changed if new modules are introduced or the
records are modified. In order to obtain truly generic
models, in a future solution, they should be stated in
abstract terms of their sets Ai, Ei, F\(Ai Ei) and the
mapping to the record fields should be represented
separately.

5. Structuring the Call Data

Based the principles of section 4.2, the fields of the CDR
were grouped into the following 9 groups:
• CDR Information – this group deals with CDR-specific

information such as CDR identifier.
• Account Information – this deals with the account

information of the subscriber, such as the plan being
used, the base location of the subscriber etc.

• Call-Information – this gives information about the
source and destination phone numbers, whether they
are roaming or not etc

• Cost-Information – this gives information about the
rates that the subscriber will be charged for this call

• Duration of Call – gives the duration of the call
• Location-Information – gives the location identifiers of

the subscribers
• Data Volume – gives the data volume transferred in

case of a GPRS call
• Timestamp of call – gives the time at which the call

began
• Final-charge of call – gives the final amount that the

subscribers are charged.
In addition, the models propagate
• Set Information - dealing with the set property of a file

of CDRs.

6. Validation of the Diagnostic Model

So far, the models were validated against a small set of
typical and representative scenarios (motivated by real
cases), and the fault localization of the diagnosis tool under
the available observation was compared to the manual
debugging steps. We present two of these cases in the
following.

Table 3: Model of the Set retrieval Component

STATUS qString inputSet selectKey outputSet

Wrong * * Wrong

* Wrong * Wrong

* * Wrong Wrong

Wrong * * Subset

* Subset * Subset

* Wrong * Subset

* * Wrong Subset

Wrong * * Superset

* Superset * Superset

* * Wrong Superset

Wrong * * Empty

* Empty * Empty

* Wrong * Empty

* * Wrong Empty

OK

Ok Ok Ok Ok

* * * Empty

* * * Subset

* * * Wrong

FAULTY

* * * Superset

6.1 Scenario One: Consumer Usage Amount Less
than Expected Value.
In this scenario, it was observed that the customer usage
amount displayed in the report generated by the system is
less than the expected value.

The steps taken to manually localize the fault were as
follows:

1. Generate report – erroneous value present in report

2. Probe data marts – erroneous value present in data
mart (implying that the cause for the fault is upstream)

3. Query data warehouse – correct duration values are
present in the data warehouse (implying that
something is wrong with the selection criteria in the
query or selectKeys, in this case, the timestamps)

4. Analyze the number of CDRs in result set – does not
match with expected value

5. Analyze timestamp of a CDR and compare with
output of mediation system – does not match

Therefore, the diagnosis was ‘Erroneous timestamp
calculation’ and indeed, the aggregation component
containing the timestamp calculation code was found to be
buggy.

The steps taken to localize the fault using the model-based
diagnosis system (summarized in Table 4) were:

1. Initialize given evidence, i.e. Total duration as
observed in data marts is ‘–‘(step number 2 in the
manual debugging). With this evidence as input, the
diagnosis algorithm outputs all consistent diagnoses as
shown in the first column of Table 4.

2. Output of Set retrieval module is Wrong (step number
4 in the manual debugging) - exonerates the Set
Summation module (since the fault has occurred
before this component was used).

3. Time Info in the data warehouse is Wrong (step
number 3 in the manual debugging) - eliminates a
number of candidate diagnoses leaving the 4 diagnoses
in column 3 of the table.

4. Time Info at output of Mediation module is Ok (step
number 5 in the manual debugging) - exonerates the
‘Source to System’ component.

This leaves us with three suspect modules for more
detailed probing and debugging, including the component
that was actually found to be faulty, namely the
aggregation component.

6.2 Scenario Two: Number of Active Subscribers
not Matching Expected Value.
In this scenario, the starting point is an error in the report
summarizing the active subscriber statistics. The manual
debugging procedure required 4 probes to narrow down
onto the module causing the fault, the Set retrieval
component, which are:

1. Generate report – erroneous value in report

2. Probe data marts – erroneous value present in data
mart (implying that the cause for the fault is upstream)

3. Run query on data warehouse – correct value is
obtained, indicating the problem is downstream from
the data warehouse.

4. Analyze the Set Retrieval component – found to be
buggy.

With the help of the diagnosis engine the faulty module is
sequentially localized as shown in Table 5.

The cases provide some evidence that component-oriented
consistency-based diagnosis provides the basis for a useful
debugging aid. More specifically, the level of abstraction
of the component models appears to be expressive enough
for the task. This indicates that the tool may indeed
successfully guide a human debugger without requiring
him to have deep detailed knowledge about the system
structure, the modules, recent modifications etc. any more.
This is possible since this domain knowledge about the
system is now incorporated into the model. Therefore, at
least for a set of common sources of errors, a person not
too experienced with the data warehouse system can
perform debugging, which was previously impossible.

7. Future Work

In this paper, we described the models for consistency-
based debugging of a data warehouse application and its
validation. So far, only the diagnostic part has been
realized. For a real debugging aid, a module has to be
integrated that proposes “probes”, i.e. inspection of
persistent data and rerunning process steps. More scenarios
will be treated to establish the basis for making a business
case that justifies the development of a tool for everyday
use in this area.

Table 4: Debugging Trace for Scenario 1. The evidence is incrementally added in order to obtain focused diagnoses as
is shown by the monotonically shrinking diagnosis set. “X” means that the respective module is no longer a (minimal)
diagnosis
Evidence 1: Output duration

total is less than expected
Evidence 2: Set property of

Result Set output by Set
Retrieval is Wrong

Evidence 3: TimeInfo of
CDRs present in data
warehouse is Wrong

Evidence 4: TimeInfo of
CDRs output of mediation

module is Ok
Source to system Source to system Source to system X

File transfer File transfer X X
Value decoding Value decoding Value decoding Value decoding
Normalization Normalization Normalization Normalization
Aggregation Aggregation Aggregation Aggregation

DW file transfer DW file transfer X X
Data warehouse Data warehouse X X

Query construction Query construction X X
Set retrieval Set retrieval X X

Set summation X X X
Explanation: With the

initial symptom, all
components are candidates

for fault localization.

Explanation: Since output
of Set Retrieval itself is

Wrong, it means fault has
occurred at or before this

component.

Explanation: All
components downstream of

this new observation are
exonerated.

Explanation: All
components upstream of this
observation are exonerated

since, till this point, the
values are Ok.

Table 5: Diagnosis Sequence for Scenario 2 showing the monotonically decreasing diagnosis set size, ultimately
narrowing down to the faulty component. “X” means that the respective module is no longer a (minimal) diagnosis
Evidence 1: Output
subscriber count is
less than expected

Evidence 2: Set
property of output by
Set Retrieval is
Wrong

Evidence 3: Set
property of result set
output by data
warehouse is Ok

Evidence 4:
TimeInfo of CDR in
data warehouse is Ok

Evidence 5: AcctInfo
of CDR in data
warehouse is Ok

Source to system Source to system Source to System Source to system X
File transfer File transfer X X X

Value decoding Value decoding X X X
Normalization Normalization X X X
Aggregation Aggregation Aggregation X X

DW file transfer DW file transfer X X X
Data warehouse Data warehouse Data warehouse Data warehouse X

Query construction Query construction X X X
Set retrieval Set retrieval Set retrieval Set retrieval Set retrieval

Set summation X X X X
Explanation: With
the initial symptom,
all components are
candidates for fault

localization.

Explanation: Since
output of Set Retrieval

itself is Wrong, it
means fault has

occurred at or before
this component.

Explanation: All
components

modifying the set
property of the CDRs

upstream are
exonerated.

Explanation: All
components

modifying the
timeInfo property of
the CDRs upstream

are exonerated.

Explanation: All
components

modifying the
acctInfo property of
the CDRs upstream
are exonerated, thus

narrowing down to the
correct fault
localization.

References

[Chaudhuri 97] S. Chaudhuri, U. Dayal: An overview of
data warehousing and OLAP Technology. In: ACM
SIGMOD Record, 1997.

[Inmon 92] W.H. Inmon: Building the Data Warehouse.
John Wiley, 1992.

[Struss 08] P. Struss: Model-based Problem Solving.
In: van Harmelen, F., Lifschitz, V., and Porter, B. (eds.).
Handbook of Knowledge Representation, Elsevier, 2008

