Modeling for Fault Localization in Data Warehouse Applications

!peter Struss,?Vikas Shivashankar,3Mohamed Zahoor

Technische Universitat Miinchen, Germany, struss@inde, 2|IT Madras, Chennai, India,
3Ericsson India Private Limited, Chennai, India

Abstract

The paper describes first results of an attemputetcelop a
general tool for localizing faults in applications data
warehouse technology. Genericity is achieved byodeah
based approach: a model of the application is garéd
from a library of models of standard (types of) mied and
exploited by a consistency-based diagnosis algurith
originally used for diagnosing physical devices.ohder to
obtain discriminating interdependencies, the baravi
description in the models is stratified accordinglifferent
roles and processing of the various types of tha dad
captures the potential impact of faults of procgteps and
data transfer on the data as well as on sets d. dat
Reflecting the nature of the initial symptoms arfdtioe
potential checks, these descriptions are statedaat
gualitative level. In the current solution, the ptoms are
assumed to stem from human assessment of reports
generated from the data ware house, while checksbea
inspection of the data base or other persisterd datd
rerunning certain process steps. The solution heen b
validated in customer report generation of a prewidf
mobile phone services.

1. Introduction

One of the most urgent needs these days is totigtgc
support debugging of software, which becomes amr eve
increasing factor to determine both the industidald
commercial sphere and our personal lives. Oneefihst
successful techniques of model-based problem gplign

models tend to become very specific and are nctatga
across different problem instances, which resuftsai
(usually inhibitive) high cost of modeling.

Thirdly, while modeling the possible faults is ofte
straightforward for physical systems (a shortedstes is
consistent with an increased current, but an open is
not), modeling faults in software is usually infixes,
because the space of programmers’ faults is iefinit

The work we presented here is guided by the idea th
classes of certain standardized software applicstinay
help to overcome the abovementioned obstacles by
providing an intermediate level of abstraction thbws

for reusable models of standard software modulet an
especially for generic fault models — an approaehhave
not encountered in the existing literature on mdmded
software debugging.

In this paper, we address fault localization in adat
warehouse applications as an instance of suchss dh
standardized software applications.

The next section introduces the foundations of this
application area and describes our specific progatata
warehouse application of a communication network
provider in India. After a brief characterizationf o
component-oriented consistency-based diagnosispset
presents the core contribution of this paper, theflations
and examples of generic models for debugging o# dat
warehouse applications. We then present the spetiah

to an application in customer report generation aof
provider of mobile phone services (section 6) aisduks

component-oriented consistency-based diagnosis (seethe results of an initial validation of the apprbaand

[Struss 08]). Exploiting this technology, which Haalped
to localize and identify faults in devices, for tsodre

debugging has been pursued for quite some time (see

[Struss 08] for some references).

There are a number of obstacles that
straightforward transfer of consistency-based diagn
techniques to software debugging. The most fundéahen
one is the difference betwediagnosisof (well-designed)
artifacts andlebuggingof software: while the former aims
at identifying or localizing the deviation of a fau
realization from acorrect design the latter is concerned
with identifying or localizing the reason why arcorrect
designfails to meet the specification.

The second obstacle is modeling itself: at the dedel, a
component-oriented model becomes too complex an
prevents a solution to scaling up to interestinggpams,
whereas at a very high level of software modulég t

hamper a

future work.

2. Application Domain: Data Warehousing

2.1 General Background

Data Warehousing and On-Line Analytical Processing
(OLAP) are essential elements in decision suppatems.
Nowadays, there is a need to not only manage huge
amounts of data, but also an equally, if not miongortant
requirement of analyzing this data and extractisgful
information, and data warehousing technologies sripp
this. Many commercial products and tools in thisaaare

g now available, aiming at enabling faster and more

informed decision making.

Monitoring & Admnistration
—J]

Metadata

Repository

Data Warehouse

'x D@,ﬁ

Figure 1 Architecture of a generic data warehouse
system

Operational

Data sources

Data Marts

A data warehouse is a “subject-oriented, integratiete-
varying, non-volatile collection of data that is eds
primarily in organizational decision making.”[Inmd@2].
The aim of data warehousing technologies is diffefeom
that of operational databases, which typically telee of
day-to-day transactions. Unlike the latter, theufom data

warehousing is decision support, and, hence, suinetar

and consolidated data are more important than iy

records. Data warehouses arders of magnitude larger
than typical databases and their main bottlenecknis
answering complex ad-hoc queries involving scaossj
and aggregations typically over millions of records

Therefore, data warehousing technologies are begpmi

more sophisticated, complex and, as a result, rfeork-

prone, as well.

The general architecture of a data warehousingsyg as

shown inFigure 1 [Chaudhuri 97]. The major modules in

such a system are:

* Pre-processing— This set of modules deals with the
cleaning of data, normalization of certain fieldsda
other pre-processing methods needed to bring ttee da
to a common standard format.

e Loading of the data warehouse- This deals with the
loading of the pre-processed data appropriately int
the warehouse.

e Summarization and consolidation using data marts-
This includes aggregating and consolidating the
warehouse data and storing it into customized
databases called data marts.

Therefore, a typical cycle in a Data Warehousing
application is:

¢ Arrival of new data

» Pre-processing of the data

« Loading into the data warehouse

» Consolidation of new data with old data

e Storing consolidated data into data marts

| sowrcETOsvsTEM |

S T
A =] [P

=R __l;_______ e

FILE RENAMING |

— I

FILE TRANSFER |

- II

R T e

VALUE DECODING |
¥

NORMALIZATION |
¥

CATEGORIZATION |

|

|

¥
AGGREGATION
¥
DWW FILE TEANSFER

1
1
1
1
I
1
1
1
1
1
I
1
1
1
1
I
1
1
1
1
1
1
1
1
1
[}
1
1
1
1
I
I
[&

DATA WAREHOUSE | QUERY CONSTRUCTICN

| ol Tt S s g i Seprne S e e o ez]

| SETR_ETFRIEVAL
¥

| SET SUMMATION |

DATA MARTS i

R _______l__ S

| REPORT GENERATION |

[

I —Madiation system
II — Trensformation System
1T — Post Data-Warehouse System

Figure 2: Process diagram of a report generation
system based on call data

2.2 Report Generation Based on Call Data

The report generation tool is a systeRig(re 2) used to
generate useful information from consumer usagerdsc
known as Call Data Records (CDR). The CDRs are
generated by a number of network nodes operating in
different regions and contain data such as duratifothe
call (in case of normal calls), data volume transf (in
case of a GPRS call), source and destination betsn
cost of the call, location identifiers of sourcedan
destination regions. The data is subject to variptes
processing steps in the Data Warehousing SystemSDW
and then loaded into the data warehouse.
Extract-transform-and-load operations are theniegpio
the warehouse data to obtain customized figures) sis
countrywide aggregate revenue for a given time ogeri
(e.g. a month), total revenue from a particularioeg
number of active subscribers in a given region litkiality

of the service providers to the customers, theoregiise
distribution of network usage etc., which are tktred in
specialized data warehouses known data marts.

Updates to the data marts are typically done oraify d
basis. From the data marts customized
generated. For instance, thalance reportshows the total
account balance of the subscriber base on a giaten thus
used for reporting the operator’s liability.

Another example is theustomer usage report which
gives information about the usage statistics ofctiitomer
base for a given period of time, both for voicevasdl as
GPRS calls.

A detailed process diagram is as shown in Figu@rize a
CDR file is received from the source nodes, rtiediation
module processes it and renames the CDR file, rssjgt

a unigue sequence number. After this, the CDR ifile
transferred via FTP to thé&ansformation system for
further pre-processing.

The collection engine of the transformation system
monitors the directories for any incoming CDRs frtime
mediation system. Once a file of CDRs is receivibé,
engine transforms each CDR into an internal datectstre

in the value decoding module. Theprocessing engine
checks the CDR for mandatory fields, thermalization
module normalizes all numbers to a uniform fornaatd
the categorization stage attaches tags to the CDR based on
values of certain fields, such as tagging the mas
local, national or international according to tloeirge and
destination numbers. Thaggregation step performs the
combination of multiple fields into one, deriving rew
field based on certain existing fields etc. Fotanse, this
step combines the local timestamp field and the tamne
information in the CDR to generate a UTC timestaiiie
CDR is now stored in another data structure andquhs
onto thedistribution engine, which transfers all processed
CDRs from the data structure to an output file. ©tigs is
done for all the CDRs, they are stored into theadat
warehouse.

Extract-transform-and-load operations are carriegt o
periodically on the data warehouse to populateocnizted
consolidated values into the data marts. Thereliffierent
kinds of data marts based on their functionalitycts as
financial, usage-level and subscriber-life-cycléadanarts.

that most intermediate results are not persistadt lagh

reports are efforts to rerun parts of the process.

The following is a typical fault scenario encouettin the
application where the tot@lumber of active subscribers

in the system according to a generated report wds n
matching the expected value. To check whether &g f
was produced during report generation, the datésmaare
inspected. When the same error was found in tha dat
marts (thus implying that the fault was createdngasn in

the process), the warehouse data was then checked f
errors. When the warehouse data was found ©OKdand

yet the value in the data marts was wrong), it was
concluded that there is an error with thet retrieval
module logic The code, after being checked, was indeed
found to be buggy.

3. Component-oriented Consistency-based
Diagnosis

The description of the system and the task suggests
perspective of “Localizing the fault in one compohef
the system as the possible cause of its misbeliavior
Component-oriented consistency-based diagnosis (see
[Struss 08]) has been developed as a solutionagndsis

of a broad class of physical artifacts. In a nelishit can

be informally described as follows: the behavioreaich
component (type) of a system is modeled in a cdntex
independent manner. Each componentdh be in one of
different behavior modes ma@@). The correct or
intended behavior mode (OK) is one of them, ancmsth
are either simply its negation or a list of speciftlasses
of) misbehaviors (such as “open” or “shorted” for a
resistor). An overall system model is (automatigall
configured according to the system structure (the

interconnectivity of the components) for a mode
assignment

MA = {mode(C)},
which specifies a unique behavior mode for each

component.

The consolidated values in the data marts are then A diagnosis is obtained as a mode assignment MAsetho

visualized using a customizeeglport generation system as
shown inFigure 2.

During the various processing and transfer stegts dan
be corrupted in many ways and lead to missing amgr
data stored in the data warehouse and/or the datts or
appearing in the reports. For instance, a breakdovthe
network connectivity during the transfer of CDR#oithe
warehouse might lead to incomplete data in the narse,
thus leading to faults downstream. Usually, sucfeats
are not detected until some results in the repares
identified as obviously incorrect, e.g. the totavenue for
a time period being orders of magnitude smallelacger
than expected. Localizing the cause for this denian the
entire process chain can be a tedious and timedouing
task for the staff. Some reasons for this are fatu
changes in the structure and modules of the systenfact

model is consistent with the observations:

MODEL(MA) O OBS1Y/ O.
Even if only the OK modes have an associated makisl,
yields fault localization. If models of the variodault
modes exist, then fault identification can be penied and
fault localization can be more confined.
Despite a number of obstacles, that were mentiameide
introduction, the principles and techniques of cormgnt-
oriented consistency-based diagnosis can be eeglddr
fault localization in programs under certain coiudis.

4. Diagnostic Model of Data Warehouse
Applications

4.1 The Main Ideas

The overall process described in section 2.2 iscaueance
of steps all data have to go through to ultimatgéld a
result in a report. If a wrong result is detectedch of

4.2 Partitioning of the Data

In this section, we present a general principle for
partitioning the data for the debugging purposee Th
rationale behind this is the fact that software oiesl only
refer to certain parts of the data and also modifyy
certain fields on the data. Therefore, each mothdaces
a partition of the data fields, basically int@levant and
irrelevant to the function of the module. Relevant fields

these steps may be suspected to have caused it. Agre those that are either referred to or modifigdthe

straightforward application of consistency-baseagdbsis

as described in section 3 (with each step modeted a
component in a linear structure) will produce ekathtis
result. Both for a human and a (semi-)automatiaidging

aid, there are three basic ways to reduce the Bet o
diagnostic candidates and finally obtain a fauttl@ation:

« Collect more observations In our application, this
means checking intermediate data. Besides the data
warehouse and the data marts, the only persistgat d
are the output of the mediation system Inspecting
more intermediate results requires re-running the
steps, which is time-consuming and should be done
only after having confined the location of the faas
precisely as possible by the following means.

« Usefault models. In contrast to physical systems, it is
impossible to find a small set of models coverihg t
abnormal behavior of pieces of software in the gane
case. However, at the abstract level of the funalio
description of a data warehouse application, it
becomes feasible to describe some plausible imprope
behaviors of a module. This becomes even more
powerful together with the third step.

» Refine the structure. This is achieved by stratifying the
data according to their type and role in the preces
Different steps affect different fields of the red¢pand
so do faults in these steps. For instance, a bug in
normalization of a temporal representation may
corrupt the time information, but leaves location
information unchanged. And an incomplete
transmission of data truncates a set of records, bu
leaves the content unmodified.

The last example illustrates the need to not ordgeh the

manipulation of the content of records, but exgici

represent and propagate propertiegeaford sets If the
record, say, for a particular day is incompleteenth

summing up some numerical information will yield a

number which is too small.

This in turn motivates the modeling principle chusthe

models capture thdeviation of properties ofdata fields

or sets from those that would have been obtained if

everything had worked as planned. Starting from an °

observed deviation of some report result, the sysie
going to identify models of the entire process that
consistent with this deviation. In this abstract
representation, the references for the deviati@mam
implicit and dependent on the context: they areegiby
whatever are the outputs of the various steps that
respective report result depends on.

module. Our strategy is, therefore, to construdlabal
partitioning that respects all local partitions.

This can be formalized as follows: For each moddjend
fields f O F from the data records:

A is the set of fields; 0 F of the input whose content
may affect the result, both under normal and abnormal
behavior,

E; is the set of fields 1 F of the output that areffects
of the processing of the module under normal and
abnormal behavior.

In addition, each field;f0 F has a type Tf which
influences the (description of the) potential @tieins that
it can exhibit such asNumerical, String etc. (see
following subsection).

Based on the local partitioning are found, the glob
partitioning is defined as the one that respectdoakl
partitions and the type, with the partitions beingximal:

Ok fifnOPc= (00 FOA = fnOA)
Of0E - fuOE))
O (T(f) = T(fw)
For example, in case of the aggregation module, A
represents the fields that are aggregated andhé&
aggregated field. Similarly, for the retrieval mésluA; are

the keys to the query while; Eomprises the selected
output fields.

4.3 Types of Fields and their Domains

The data fields and the data occurring in the queargt
report generation steps are categorized intonerical
(such as duration of a call in our applicatiotgtegorical
(such as source and destination phone numbersktang
(such as a database query). We use the followingadts,
which capture the deviation of an actual value of a
variable, X, from some reference valugyX

Numerical = {Ok, , +, ++, oppSign}, where

ok it X = X
oppSign if (X* X< 0)

¢ - it (X* Xper>= 0) 0 (X < Xpep
0= (X << Xee)

¢ - if (X* Xper>= 0) 0 (X << Xre)

* + if (x * xref>: 0) O (X > Xref)
U= (X >> xref)

* ++ if (X*Xe>=0)0(X >> Xeep)

Categorical = {Ok, Wrong}, where
« Ok if X = Xes
« Wrong if X# Xeet

String = {Ok, Null, Wrong, SynWrong},where
« Ok if X = Xt

« Null if (X=null)O= (X=X
« Wrong if = (X=null)O-= (X=X O(X
is valid)

e SynWrong if = (X=null)O= (X=X

0= (X is valid)

The motivation for valid, invalid and null strings
predominantly to capture features of database egsteri
valid strings are those which are syntactically correet (
which will execute without an exception on a dat)a
whereasinvalid strings are those which will result in an
error when executed on a databdsall strings are also
used to handle the case when the string constructio
module failedcompletely, resulting in an empty string.

As explained above, the model also captures efglitow

a set of data, DS, which is processed, is relaidtie data
that should be processed in the proper procesg;. DBe

domain of the respective variable is

Set= {Ok, Empty, Subset, Superset, Wrong}, where
« Ok if DS =D%¢

« Empty if (DS={}) 0- (DS =DS

e Subset if = (DS={}) O(DSUODSe)

e Supersetif = (DS ={}) O(DSO DSy

e« Wrong if - (DSODSe) O~ (DSefdDS)
- (DS =DSy)

4.4 Models

Once the stratification of data into appropriateups is
established, models of individual components capgur
both the desired and possible faulty behaviors ban
designed, capturing the information about how a
component treats the abovementiongdrtitions of a
record. In the following, we present some exampiem

the model library.

File transfer component. If we consider the File Transfer
component (which, in our application, handles tlamsfer
of files containing CDRs across a network), we krtbat
only the ‘record set’ property can be affected, ifethe
transfer is not successful, either the file transfeas
incomplete (nevertheless preserving the integrityan
individual record) or nothing at all was transfekire
resulting in a completely unsuccessful transfer.full
description of the model of this component is shawn
Table 1

As can be observed from the table, in the OK mddhe
component, the set property of the CDR file is dimp
propagated, i.e. output of the component is idaehtic its
input.

Table 1 : Model of the File transfer Component

STATUS Input.set Output.set
OK Ok Ok
Wrong Wrong
Empty Empty
Subset Subset
Superset Superset
CONNECTION | * Subset
DISRUPTED * Empty
Superset Wrong

Table 2: Model of the Query construction Component

STATUS gStrTemplate qCriteria gString
OK Ok Ok Ok
Ok Wrong Wrong
Wrong * Wrong
Wrong * SynWrong
FAULTY * * Wrong
* * SynWrong

However, in the fault mode when the FTP connectfon
broken, the model captures the fact that no mattext the
nature of the input, the output could be eith&Sulbsetof
the original data (resulting from a partial loss in
connectivity) or arEmpty set (resulting from a complete
loss of connectivity). In addition, if the input ia
Superset the output after truncation can beAaong set
(which means, we ignore the highly unlikely casatth
transaction incidentally produces the proper set).

However, an assumption made while building this ehdsl
that the file transfer component never spoils thegrity of
the data and only can disrupt the set propertyclvhs
indeed true in our case study.

In our application,this model is used in differgréces in
the process: the data transfer to the transformatystem
and the transfer into the data warehouse.

Query construction component. This takes as input a
qguery templategStringTemplate, with placeholders for
variables and categorical variablegCriteria containing
values for these placeholders, and produces a cptiing,
gString. It is used to construct queries automatically in
order to retrieve desired information from the data
warehouse. The model of this component is described
Table 2 In theOK mode of operation, if both inputs are
Ok, the output is Ok. If not, the output takes ampiate
values for different input cases as shown in théeta

In the FAULTY mode of operation, no matter what the
values of the input are, the output string can thkevalues
Wrong or SynWrong.

Set retrieval component.As a final example, we consider
the component that retrieves relevant data fromddta
warehouse for a particular operation (e.g. to dateuotal

revenue for a particular period, this module extabe
per-CDR revenue data) which then may be given astin
to a module that performs an operation on this @siah

as the summation component). The inputs to this
component are the query string for the actual ee#li
gString, the data set on which the query operates,
inputSet, and selectkey which determines the required
field (e.g. the revenue per CDR) and generatesdiegant
subset of dataputputSet A complete description of the
model is given inrable 3.

In a similar manner, the other components are neaklel
capturing both the normal and deviant behavior with
appropriate fault modes.

It should be noted as an important disadvantage tttea
global partitioning, being dependent on the loca® may
have to be changed if new modules are introduceither
records are modified. In order to obtain truly géme
models, in a future solution, they should be stated
abstract terms of their sets;, A5, F\(Ay¢ E) and the
mapping to the record fields should be represented
separately.

Table 3: Model of the Set retrieval Component
STATUS (String

OK

Wrong

inputSet

*

selectKey outputSet

*

Wrong

*

Wrong

*

Wrong

*

*

Wrong

Wrong

Wrong

*

Subset

Subset

Subset

Wrong

Subset

*

Subset

*

Superset

Superset

Superset

*

Superset

*

Empty

Empty

Empty

Wrong

Empty

*

Empty

Ok

Ok

5. Structuring the Call Data

Based the principles of section 4.2, the fieldshef CDR
were grouped into the following 9 groups:

* CDR Information — this group deals with CDR-specific

FAULTY

Empty

Subset

Wrong

Superset

information such as CDR identifier.

¢ Account Information — this deals with the account
information of the subscriber, such as the plamdpei
used, the base location of the subscriber etc.

e Call-Information - this gives information about the

source and destination phone numbers, whether they

are roaming or not etc

¢ Cost-Information — this gives information about the
rates that the subscriber will be charged for ¢his

 Duration of Call — gives the duration of the call

< Location-Information — gives the location identifiers of
the subscribers

« Data Volume — gives the data volume transferred in
case of a GPRS call

« Timestamp of call — gives the time at which the call
began

« Final-charge of call — gives the final amount that the
subscribers are charged.

In addition, the models propagate

« Set Information - dealing with the set property of a file
of CDRs.

6. Validation of the Diagnostic Model

So far, the models were validated against a snedllo
typical and representative scenarios (motivated rémsl
cases), and the fault localization of the diagntesi$ under

6.1 Scenario One: Consumer Usage Amount Less
than Expected Value.

In this scenario, it was observed that the custonsage
amount displayed in the report generated by theesyss
less than the expected value.

The steps taken to manually localize the fault wase

follows:

1. Generate report— erroneous value present in report

2.Probe data marts — erroneous value present in data

mart (implying that the cause for the fault is upam)
3. Query data warehouse —correctduration values are

present

in the data warehouse (implying that

something is wrong with the selection criteria e t
guery or selectKeys, in this case, the timestamps)

4. Analyze the number of CDRs in result set- does not
match with expected value

5.Analyze timestamp of a CDR and compare with
output of mediation system- does not match

Therefore, the diagnosis wasErfoneous timestamp
calculation’ and indeed, theaggregation component
containing the timestamp calculation code was faunke

buggy.

the available observation was compared to the manua The steps taken to localize the fault using the ehbdsed
diagnosis system (summarized in Tafjlevere:

debugging steps. We present two of these casehkein t
following.

1.Initialize given evidence i.e.
observed in data marts is‘(step humber 2 in the
manual debugging). With this evidence as input, the

diagnosis algorithm out

Total duration as

puts all consistent diagaase

shown in the first column of Table

2. Output of Set retrieval module is Wrong(step number
4 in the manual debugging) exonerates theSet

Summation module (since the fault has occurred

before this component was used).

3.Time Info in the data warehouse is Wrong(step
number 3 in the manual debugging)eliminates a

number of candidate diagnoses leaving the 4 diagmnos

in column 3 of the table

4. Time Info at output of Mediation module is Ok (step
number 5 in the manual debugginggxonerates the
‘Source to System’ component.

This leaves us with three suspect modules for more

detailed probing and debugging, including the congmb

that was actually found
aggregationcomponent.

to be faulty,

6.2 Scenario Two: Number of Active Subscribers
not Matching Expected Value.
In this scenario, the starting point is an errotha report

summarizing the active su

debugging procedure required probes to narrow down

onto the module causing
component, which are:

bscriber statistics. Tranunl

the fault, ti8et retrieval

1. Generate report— erroneous value in report

2.Probe data marts — erroneous value present in data

mart (implying that the cause for the fault is upatm)

namely the

3.Run query on data warehouse— correct value is
obtained, indicating the problem is downstream from
the data warehouse.

4.Analyze the Set Retrieval component found to be
buggy.

With the help of the diagnosis engine the faultydore is
sequentially localized as shownTiable 5.

The cases provide some evidence that componemttedie
consistency-based diagnosis provides the basia fmeful
debugging aid. More specifically, the level of abstion

of the component models appears to be expressivegln
for the task. This indicates that the tool may gdie
successfully guide a human debugger without reagiiri
him to have deep detailed knowledge about the syste
structure, the modules, recent modifications etg. more
This is possible since this domain knowledge atibet
system is now incorporated into the model. Thersfait
least for a set of common sources of errors, aopen®t
too experienced with the data warehouse system can
perform debugging, which was previously impossible.

7. Future Work

In this paper, we described the models for consiste
based debugging of a data warehouse applicationitand
validation. So far, only the diagnostic part haserbe
realized. For a real debugging aid, a module hageto
integrated that proposes “probes”, i.e. inspectioh
persistent data and rerunning process steps. Meresos
will be treated to establish the basis for makinguainess
case that justifies the development of a tool feergday
use in this area.

Table 4: Debugging Trace for Scenario 1. The evider is incrementally added in order to obtain focuskdiagnoses as
is shown by the monotonically shrinking diagnosiset. “X” means that the respective module is no lorgy a (minimal)

diagnosis

Evidence 1:Output duration
total islessthan expected

Evidence 2 Set property of
Result Set output by Set

Evidence 4:Timelnfo of
CDRs output of mediation

Evidence 3 Timelnfo of
CDRs present in data

Retrieval isWrong warehouse iSVrong module isOk
Source to system Source to system Source to system X
File transfer File transfer X X
Value decoding Value decoding Value decoding Vaeeoding
Normalization Normalization Normalization Normaliizm
Aggregation Aggregation Aggregation Aggregation
DW file transfer DW file transfer X X
Data warehouse Data warehouse X X
Query construction Query construction X X
Set retrieval Set retrieval X X
Set summation X X X

Explanation: With the
initial symptom, all
components are candidate
for fault localization.

Explanation: Since output
of Set Retrieval itself is

s Wrong, it means fault has

occurred at or before this

component.

Explanation: All Explanation: All
components downstream gf components upstream of this
this new observation are | observation are exonerated
exonerated. since, till this point, the
values are Ok.

Table 5: Diagnosis Sequence for Scenario 2 showitige monotonically decreasing diagnosis set sizetiolately
narrowing down to the faulty component. “X” means hat the respective module is no longer a (minimabjiagnosis

Evidence 1:Output
subscriber count is
lessthan expected

Evidence 2 Set
property of output by
Set Retrieval is
Wrong

Evidence 3 Set
property of result set
output by data
warehouse i©k

Evidence 4:
Timelnfo of CDR in
data warehouse Bk

Evidence 5: Acctlnfo
of CDR in data
warehouse i©k

Source to system Source to system Source to System Source to system X
File transfer File transfer X X X
Value decoding Value decoding X X X
Normalization Normalization X X X
Aggregation Aggregation Aggregation X X
DW file transfer DW file transfer X X X
Data warehouse Data warehouse Data warehouse Rethouse X
Query construction Query constructior X X X
Set retrieval Set retrieval Set retrieval Set et Set retrieval
Set summation X X X X
Explanation: With Explanation: Since Explanation: All Explanation: All Explanation: All
the initial symptom, | output of Set Retrieva| components components components
all components are itself is Wrong, it modifying the set modifying the modifying the

candidates for fault
localization.

means fault has
occurred at or before|
this component.

property of the CDRs
upstream are
exonerated.

timelnfo property of
the CDRs upstream
are exonerated.

acctinfo property of
the CDRs upstream
are exonerated, thus
narrowing down to the
correct fault
localization.

References

[Chaudhuri 97] S. Chaudhuri, U. Dayal: An overviefv
data warehousing and OLAP Technology. In: ACM
SIGMOD Record, 1997.

[Inmon 92] W.H. Inmon: Building the Data Warehouse.

John Wiley, 1992.

[Struss 08] P. Struss: Model-based Problem Solving.
In: van Harmelen, F., Lifschitz, V., and Porter, (Bds.).
Handbook of Knowledge Representation, Elsevier8200

