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Abstract 
The paper describes first results of an attempt to develop a 
general tool for localizing faults in applications of data 
warehouse technology. Genericity is achieved by a model-
based approach: a model of the application is configured 
from a library of models of standard (types of) modules and 
exploited by a consistency-based diagnosis algorithm, 
originally used for diagnosing physical devices. In order to 
obtain discriminating interdependencies, the behavior 
description in the models is stratified according to different 
roles and processing of the various types of the data and 
captures the potential impact of faults of process steps and 
data transfer on the data as well as on sets of data. 
Reflecting the nature of the initial symptoms and of the 
potential checks, these descriptions are stated at a 
qualitative level. In the current solution, the symptoms are 
assumed to stem from human assessment of reports 
generated from the data ware house, while checks can be 
inspection of the data base or other persistent data and 
rerunning certain process steps. The solution has been 
validated in customer report generation of a provider of 
mobile phone services. 

1. Introduction 

One of the most urgent needs these days is to effectively 
support debugging of software, which becomes an ever 
increasing factor to determine both the industrial and 
commercial sphere and our personal lives. One of the most 
successful techniques of model-based problem solving is 
component-oriented consistency-based diagnosis (see 
[Struss 08]). Exploiting this technology, which has helped 
to localize and identify faults in devices, for software 
debugging has been pursued for quite some time (see 
[Struss 08] for some references).  
There are a number of obstacles that hamper a 
straightforward transfer of consistency-based diagnosis 
techniques to software debugging. The most fundamental 
one is the difference between diagnosis of (well-designed) 
artifacts and debugging of software: while the former aims 
at identifying or localizing the deviation of a faulty 
realization from a correct design, the latter is concerned 
with identifying or localizing the reason why an incorrect 
design fails to meet the specification.  
The second obstacle is modeling itself: at the code level, a 
component-oriented model becomes too complex and 
prevents a solution to scaling up to interesting programs, 
whereas at a very high level of software modules, the 

models tend to become very specific and are not reusable 
across different problem instances, which results in a 
(usually inhibitive) high cost of modeling.  
Thirdly, while modeling the possible faults is often 
straightforward for physical systems (a shorted resistor is 
consistent with an increased current, but an open one is 
not), modeling faults in software is usually infeasible, 
because the space of programmers’ faults is infinite. 
The work we presented here is guided by the idea that 
classes of certain standardized software applications may 
help to overcome the abovementioned obstacles by 
providing an intermediate level of abstraction that allows 
for reusable models of standard software modules and, 
especially for generic fault models – an approach we have 
not encountered in the existing literature on model-based 
software debugging.  
In this paper, we address fault localization in data 
warehouse applications as an instance of such a class of 
standardized software applications.  
The next section introduces the foundations of this 
application area and describes our specific project: a data 
warehouse application of a communication network 
provider in India. After a brief characterization of 
component-oriented consistency-based diagnosis, section 4 
presents the core contribution of this paper, the foundations 
and examples of generic models for debugging of data 
warehouse applications. We then present the specialization 
to an application in customer report generation of a 
provider of mobile phone services (section 6) and discuss 
the results of an initial validation of the approach and 
future work. 

2. Application Domain: Data Warehousing 

2.1 General Background 
Data Warehousing and On-Line Analytical Processing 
(OLAP) are essential elements in decision support systems. 
Nowadays, there is a need to not only manage huge 
amounts of data, but also an equally, if not more, important 
requirement of analyzing this data and extracting useful 
information, and data warehousing technologies support 
this. Many commercial products and tools in this area are 
now available, aiming at enabling faster and more 
informed decision making.  



A data warehouse is a “subject-oriented, integrated, time-
varying, non-volatile collection of data that is used 
primarily in organizational decision making.”[Inmon 92]. 
The aim of data warehousing technologies is different from 
that of operational databases, which typically take care of 
day-to-day transactions. Unlike the latter, the focus in data  

warehousing is decision support, and, hence, summarized 
and consolidated data are more important than individual 
records. Data warehouses are orders of magnitude larger 
than typical databases and their main bottleneck is in 
answering complex ad-hoc queries involving scans, joins 
and aggregations typically over millions of records. 
Therefore, data warehousing technologies are becoming 
more sophisticated, complex and, as a result, more fault-
prone, as well. 

The general architecture of a data warehousing system is as 
shown in Figure 1 [Chaudhuri 97]. The major modules in 
such a system are: 

• Pre-processing – This set of modules deals with the 
cleaning of data, normalization of certain fields and 
other pre-processing methods needed to bring the data 
to a common standard format. 

• Loading of the data warehouse – This deals with the 
loading of the pre-processed data appropriately into 
the warehouse. 

• Summarization and consolidation using data marts – 
This includes aggregating and consolidating the 
warehouse data and storing it into customized 
databases called data marts. 

Therefore, a typical cycle in a Data Warehousing 
application is: 

• Arrival of new data 

• Pre-processing of the data 

• Loading into the data warehouse 

• Consolidation of new data with old data 

• Storing consolidated data into data marts 

2.2 Report Generation Based on Call Data 
The report generation tool is a system (Figure 2) used to 
generate useful information from consumer usage records 
known as Call Data Records (CDR). The CDRs are 
generated by a number of network nodes operating in 
different regions and contain data such as duration of the 
call (in case of normal calls), data volume transferred (in 
case of a GPRS call), source  and  destination  numbers, 
cost of the call, location identifiers of source and 
destination regions. The data is subject to various pre-
processing steps in the Data Warehousing System (DWS) 
and then loaded into the data warehouse.  
Extract-transform-and-load operations are then applied to 
the warehouse data to obtain customized figures, such as 
countrywide aggregate revenue for a given time period 
(e.g. a month), total revenue from a particular region, 
number of active subscribers in a given region, the liability 
of the service providers to the customers, the region-wise 
distribution of network usage etc., which are then stored in 
specialized data warehouses known as data marts. 

Figure 2: Process diagram of a report generation 
system based on call data 

Figure 1 Architecture of a generic data warehouse 
system 



Updates to the data marts are typically done on a daily 
basis. From the data marts customized reports are 
generated. For instance, the balance report shows the total 
account balance of the subscriber base on a given date, thus 
used for reporting the operator’s liability.  
Another example is the customer usage report, which 
gives information about the usage statistics of the customer 
base for a given period of time, both for voice as well as 
GPRS calls.  
A detailed process diagram is as shown in Figure 2. Once a 
CDR file is received from the source nodes, the mediation 
module processes it and renames the CDR file, assigning it 
a unique sequence number. After this, the CDR file is 
transferred via FTP to the transformation system for 
further pre-processing.  
The collection engine of the transformation system 
monitors the directories for any incoming CDRs from the 
mediation system.  Once a file of CDRs is received, the 
engine transforms each CDR into an internal data structure 
in the value decoding module. The processing engine 
checks the CDR for mandatory fields, the normalization 
module normalizes all numbers to a uniform format, and 
the categorization stage attaches tags to the CDR based on 
values of certain fields, such as tagging the records as 
local, national or international according to the source and 
destination numbers. The aggregation step performs the 
combination of multiple fields into one, deriving a new 
field based on certain existing fields etc. For instance, this 
step combines the local timestamp field and the time zone 
information in the CDR to generate a UTC timestamp. The 
CDR is now stored in another data structure and passed 
onto the distribution  engine, which transfers all processed 
CDRs from the data structure to an output file. Once this is 
done for all the CDRs, they are stored into the data 
warehouse.  
Extract-transform-and-load operations are carried out 
periodically on the data warehouse to populate customized 
consolidated values into the data marts. There are different 
kinds of data marts based on their functionality, such as 
financial, usage-level and subscriber-life-cycle data marts. 
The consolidated values in the data marts are then 
visualized using a customized report generation system as 
shown in Figure 2.  
During the various processing and transfer steps, data can 
be corrupted in many ways and lead to missing or wrong 
data stored in the data warehouse and/or the data marts or 
appearing in the reports. For instance, a breakdown in the 
network connectivity during the transfer of CDRs into the 
warehouse might lead to incomplete data in the warehouse, 
thus leading to faults downstream. Usually, such defects 
are not detected until some results in the reports are 
identified as obviously incorrect, e.g. the total revenue for 
a time period being orders of magnitude smaller or larger 
than expected. Localizing the cause for this deviation in the 
entire process chain can be a tedious and time-consuming 
task for the staff. Some reasons for this are frequent 
changes in the structure and modules of the system, the fact 

that most intermediate results are not persistent and high 
efforts to rerun parts of the process.  
The following is a typical fault scenario encountered in the 
application where the total number of active subscribers 
in the system according to a generated report was not 
matching the expected value. To check whether the fault 
was produced during report generation, the data marts were 
inspected. When the same error was found in the data 
marts (thus implying that the fault was created upstream in 
the process), the warehouse data was then checked for 
errors. When the warehouse data was found to be OK  (and 
yet the value in the data marts was wrong), it was 
concluded that there is an error with the set retrieval 
module logic. The code, after being checked, was indeed 
found to be buggy.  

3. Component-oriented Consistency-based 
Diagnosis 

The description of the system and the task suggests a 
perspective of “Localizing the fault in one component of 
the system as the possible cause of its misbehavior”. 
Component-oriented consistency-based diagnosis (see 
[Struss 08]) has been developed as a solution to diagnosis 
of a broad class of physical artifacts.  In a nutshell, it can 
be informally described as follows: the behavior of each 
component (type) of a system is modeled in a context-
independent manner. Each component Cj can be in one of 
different behavior modes modei(Cj). The correct or 
intended behavior mode (OK) is one of them, and others 
are either simply its negation or a list of specific (classes 
of) misbehaviors (such as “open” or “shorted” for a 
resistor). An overall system model is (automatically) 
configured according to the system structure (i.e. the 
interconnectivity of the components) for a mode 
assignment  
 MA = {modei(Cj)},  
which specifies a unique behavior mode for each 
component.  
A diagnosis is obtained as a mode assignment MA whose 
model is consistent with the observations: 
 MODEL(MA) ∪ OBS/                          ⊥ . 
Even if only the OK modes have an associated model, this 
yields fault localization. If models of the various fault 
modes exist, then fault identification can be performed and 
fault localization can be more confined.  
Despite a number of obstacles, that were mentioned in the 
introduction, the principles and techniques of component-
oriented consistency-based diagnosis can be exploited for 
fault localization in programs under certain conditions. 



4. Diagnostic Model of Data Warehouse 
Applications 

4.1 The Main Ideas 
The overall process described in section 2.2 is a sequence 
of steps all data have to go through to ultimately yield a 
result in a report. If a wrong result is detected, each of 
these steps may be suspected to have caused it. A 
straightforward application of consistency-based diagnosis 
as described in section 3 (with each step modeled as a 
component in a linear structure) will produce exactly this 
result. Both for a human and a (semi-)automatic debugging 
aid, there are three basic ways to reduce the set of 
diagnostic candidates and finally obtain a fault localization: 

• Collect more observations. In our application, this 
means checking intermediate data. Besides the data 
warehouse and the data marts, the only persistent data 
are the output of the mediation system. Inspecting 
more intermediate results requires re-running the 
steps, which is time-consuming and should be done 
only after having confined the location of the fault as 
precisely as possible by the following means. 

• Use fault models. In contrast to physical systems, it is 
impossible to find a small set of models covering the 
abnormal behavior of pieces of software in the general 
case. However, at the abstract level of the functional 
description of a data warehouse application, it 
becomes feasible to describe some plausible improper 
behaviors of a module. This becomes even more 
powerful together with the third step. 

• Refine the structure. This is achieved by stratifying the 
data according to their type and role in the process. 
Different steps affect different fields of the record, and 
so do faults in these steps. For instance, a bug in 
normalization of a temporal representation may 
corrupt the time information, but leaves location 
information unchanged. And an incomplete 
transmission of data truncates a set of records, but 
leaves the content unmodified. 

The last example illustrates the need to not only model the 
manipulation of the content of records, but explicitly 
represent and propagate properties of record sets. If the 
record, say, for a particular day is incomplete, then 
summing up some numerical information will yield a 
number which is too small.  
This in turn motivates the modeling principle chosen: the 
models capture the deviation of properties of data fields 
or sets from those that would have been obtained if 
everything had worked as planned. Starting from an 
observed deviation of some report result, the system is 
going to identify models of the entire process that are 
consistent with this deviation. In this abstract 
representation, the references for the deviations remain 
implicit and dependent on the context: they are given by 
whatever are the outputs of the various steps that the 
respective report result depends on.  

4.2 Partitioning of the Data 
In this section, we present a general principle for 
partitioning the data for the debugging purpose. The 
rationale behind this is the fact that software modules only 
refer to certain parts of the data and also modify only 
certain fields on the data. Therefore, each module induces 
a partition  of the data fields, basically into relevant and 
irrelevant  to the function of the module. Relevant fields 
are those that are either referred to or modified by the 
module. Our strategy is, therefore, to construct a global 
partitioning that respects all local partitions.  

This can be formalized as follows: For each module M i and 
fields fj ⊂ F from the data records: 

 A i is the set of fields fj ∈ F of the input whose content 
may affect the result, both under normal and abnormal 
behavior, 

  Ei is the set of fields fj ∈ F of the output that are effects 
of the processing of the module under normal and 
abnormal behavior.   

In addition, each field fj ∈ F has a type T(fj) which 
influences the (description of the ) potential deviations that 
it can exhibit such as Numerical, String etc. (see 
following subsection). 

Based on the local partitioning are found, the global 
partitioning is defined as the one that respects all local 
partitions and the type, with the partitions being maximal: 

 ∃ k, fl, fm ∈ Pk ⇔ (∀i   (fl ∈ Ai  ⇔ fm ∈ Ai)  

           ∧ (fl ∈ Ei ⇔ fm ∈ Ei) ) 

         ∧  (T(fl) = T(fm))) 

For example, in case of the aggregation module, Ai 
represents the fields that are aggregated and Ei the 
aggregated field. Similarly, for the retrieval module, Ai are 
the keys to the query while Ei comprises the selected 
output fields.  

4.3 Types of Fields and their Domains 
The data fields and the data occurring in the query and 
report generation steps are categorized into numerical 
(such as duration of a call in our application), categorical 
(such as source and destination phone numbers), and string 
(such as a database query). We use the following domains, 
which capture the deviation of an actual value of a 
variable, X, from some reference value, Xref: 

Numerical = {Ok, -, --, +, ++, oppSign}, where 
• Ok    if   X = Xref 
• oppSign    if  (X * X ref < 0)  
• -     if   (X * Xref >= 0) ∧ (X < Xref) 
      ∧ ¬ (X << Xref) 
• --     if   (X * Xref >= 0) ∧ (X << Xref)  
• +     if   (X * Xref >= 0) ∧ (X > Xref) 
      ∧ ¬ (X >> Xref) 
• ++     if   (X * Xref >= 0) ∧ (X >> Xref) 



Categorical = {Ok, Wrong}, where 
• Ok     if   X = Xref  
• Wrong     if  X ≠ Xref  

String = {Ok, Null, Wrong, SynWrong},where 
• Ok     if   X = Xref 
• Null     if   (X = null) ∧ ¬ (X = Xref) 
• Wrong    if   ¬ (X = null) ∧ ¬ (X = Xref) ∧ (X 

is valid) 

• SynWrong   if    ¬ (X = null) ∧ ¬ (X = Xref)  
      ∧ ¬ (X is valid) 
The motivation for valid, invalid and null strings is 
predominantly to capture features of database queries: 
valid strings are those which are syntactically correct (i.e. 
which will execute without an exception on a database), 
whereas invalid strings are those which will result in an 
error when executed on a database. Null  strings are also 
used to handle the case when the string construction 
module failed completely, resulting in an empty string.  

As explained above, the model also captures explicitly how 
a set of data, DS, which is processed, is related to the data 
that should be processed in the proper process, DSref. The 
domain of the respective variable is 

Set = {Ok, Empty, Subset, Superset, Wrong}, where 
• Ok    if    DS = DSref  
• Empty   if   (DS = {}) ∧ ¬ (DS = DSref) 
• Subset    if   ¬ (DS = {}) ∧ (DS ⊂ DSref) 
• Superset if    ¬ (DS = {}) ∧ (DS ⊃ DSref) 
• Wrong    if   ¬ (DS ⊂ DSref) ∧ ¬ (DSref ⊂ DS)  
    ∧ ¬ (DS = DSref) 

4.4 Models 
Once the stratification of data into appropriate groups is 
established, models of individual components capturing 
both the desired and possible faulty behaviors can be 
designed, capturing the information about how a 
component treats the abovementioned partitions of a 
record. In the following, we present some examples from 
the model library. 

File transfer component. If we consider the File Transfer 
component (which, in our application, handles the transfer 
of files containing CDRs across a network), we know that 
only the ‘record set’ property can be affected, i.e. if the 
transfer is not successful, either the file transfer was 
incomplete (nevertheless preserving the integrity of an 
individual record) or nothing at all was transferred, 
resulting in a completely unsuccessful transfer. A full 
description of the model of this component is shown in 
Table 1.  

As can be observed from the table, in the OK mode of the 
component, the set property of the CDR file is simply 
propagated, i.e. output of the component is identical to its 
input.  

Table 1 : Model of the File transfer Component 

STATUS Input.set Output.set 

Ok Ok 

Wrong Wrong 

Empty Empty 

Subset Subset 

OK 

Superset Superset 

* Subset 

* Empty 

CONNECTION 
DISRUPTED 

Superset Wrong 
 
Table 2: Model of the Query construction Component 

STATUS qStrTemplate qCriteria qString 

Ok Ok Ok 

Ok Wrong Wrong 

Wrong * Wrong 

OK  

Wrong * SynWrong 

* * Wrong FAULTY 

* * SynWrong 

However, in the fault mode when the FTP connection is 
broken, the model captures the fact that no matter what the 
nature of the input, the output could be either a Subset of 
the original data (resulting from a partial loss in 
connectivity) or an Empty set (resulting from a complete 
loss of connectivity).  In addition, if the input is a 
Superset, the output after truncation can be a Wrong set 
(which means, we ignore the highly unlikely case that 
transaction incidentally produces the proper set). 

However, an assumption made while building this model is 
that the file transfer component never spoils the integrity of 
the data and only can disrupt the set property, which is 
indeed true in our case study. 

In our application,this model is used in different places in 
the process: the data transfer to the transformation system 
and the transfer into the data warehouse.  

Query construction component. This takes as input a 
query template, qStringTemplate, with placeholders for 
variables and categorical variables, qCriteria  containing 
values for these placeholders, and produces a query string, 
qString. It is used to construct queries automatically in 
order to retrieve desired information from the data 
warehouse. The model of this component is described in 
Table 2. In the OK  mode of operation, if both inputs are 
Ok, the output is Ok. If not, the output takes appropriate 
values for different input cases as shown in the table. 
In the FAULTY  mode of operation, no matter what the 
values of the input are, the output string can take the values 
Wrong or SynWrong.  
Set retrieval component. As a final example, we consider 
the component that retrieves relevant data from the data 
warehouse for a particular operation (e.g. to calculate total 



revenue for a particular period, this module extracts the 
per-CDR revenue data) which then may be given as input 
to a module that performs an operation on this data (such 
as the summation component). The inputs to this 
component are the query string for the actual retrieval, 
qString, the data set on which the query operates, 
inputSet, and selectKey, which determines the required 
field (e.g. the revenue per CDR) and generates the relevant 
subset of data, outputSet. A complete description of the 
model is given in Table 3. 
In a similar manner, the other components are modeled, 
capturing both the normal and deviant behavior with 
appropriate fault modes. 

It should be noted as an important disadvantage that the 
global partitioning, being dependent on the local ones, may 
have to be changed if new modules are introduced or the 
records are modified. In order to obtain truly generic 
models, in a future solution, they should be stated in 
abstract terms of their sets Ai, Ei, F\(Ai  Ei) and the 
mapping to the record fields should be represented 
separately.  

5. Structuring the Call Data 

Based the principles of section 4.2, the fields of the CDR 
were grouped into the following 9 groups: 
• CDR Information  – this group deals with CDR-specific 

information such as CDR identifier. 
• Account Information  – this deals with the account 

information of the subscriber, such as the plan being 
used, the base location of the subscriber etc. 

• Call-Information  – this gives information about the 
source and destination phone numbers, whether they 
are roaming or not etc 

• Cost-Information  – this gives information about the 
rates that the subscriber will be charged for this call 

• Duration of Call  – gives the duration of the call 
• Location-Information  – gives the location identifiers of 

the subscribers 
• Data Volume – gives the data volume transferred in 

case of a GPRS call 
• Timestamp of call – gives the time at which the call 

began 
• Final-charge of call – gives the final amount that the 

subscribers are charged. 
In addition, the models propagate 
• Set Information - dealing with the set property of a file 

of CDRs. 

6. Validation of the Diagnostic Model 

So far, the models were validated against a small set of 
typical and representative scenarios (motivated by real 
cases), and the fault localization of the diagnosis tool under 
the available observation was compared to the manual 
debugging steps. We present two of these cases in the 
following. 

 
Table 3: Model of the Set retrieval Component 

STATUS qString inputSet selectKey outputSet 

Wrong * * Wrong 

* Wrong * Wrong 

* * Wrong Wrong 

Wrong * * Subset 

* Subset * Subset 

* Wrong * Subset 

* * Wrong Subset 

Wrong * * Superset 

* Superset * Superset 

* * Wrong Superset 

Wrong * * Empty 

* Empty * Empty 

* Wrong * Empty 

* * Wrong Empty 

OK 

Ok Ok Ok Ok 

* * * Empty 

* * * Subset 

* * * Wrong 

FAULTY 

* * * Superset 

 

6.1 Scenario One: Consumer Usage Amount Less 
than Expected Value. 
In this scenario, it was observed that the customer usage 
amount displayed in the report generated by the system is 
less than the expected value.  

The steps taken to manually localize the fault were as 
follows: 

1. Generate report – erroneous value present in report 

2. Probe data marts – erroneous value present in data 
mart (implying that the cause for the fault is upstream) 

3. Query data warehouse – correct duration  values are 
present in the data warehouse (implying that 
something is wrong with the selection criteria in the 
query or selectKeys, in this case, the timestamps) 

4. Analyze the number of CDRs in result set – does not 
match with expected value 

5. Analyze timestamp of a CDR and compare with 
output of mediation system – does not match 

Therefore, the diagnosis was ‘Erroneous timestamp 
calculation’ and indeed, the aggregation component 
containing the timestamp calculation code was found to be 
buggy. 

The steps taken to localize the fault using the model-based 
diagnosis system (summarized in Table 4) were: 



1. Initialize given evidence, i.e.  Total duration  as 
observed in data marts is ‘–‘(step number 2 in the 
manual debugging). With this evidence as input, the 
diagnosis algorithm outputs all consistent diagnoses as 
shown in the first column of Table 4.  

2. Output of Set retrieval module is Wrong (step number 
4 in the manual debugging) - exonerates the Set 
Summation module (since the fault has occurred 
before this component was used). 

3. Time Info in the data warehouse is Wrong (step 
number 3 in the manual debugging) - eliminates a 
number of candidate diagnoses leaving the 4 diagnoses 
in column 3 of the table. 

4. Time Info at output of Mediation module is Ok (step 
number 5 in the manual debugging) - exonerates the 
‘Source to System’ component.  

This leaves us with three suspect modules for more 
detailed probing and debugging, including the component 
that was actually found to be faulty, namely the 
aggregation component. 

6.2 Scenario Two: Number of Active Subscribers 
not Matching Expected Value. 
In this scenario, the starting point is an error in the report 
summarizing the active subscriber statistics. The manual 
debugging procedure required 4 probes to narrow down 
onto the module causing the fault, the Set retrieval 
component, which are: 

1. Generate report – erroneous value in report 

2. Probe data marts – erroneous value present in data 
mart (implying that the cause for the fault is upstream) 

3. Run query on data warehouse – correct value is 
obtained, indicating the problem is downstream from 
the data warehouse. 

4. Analyze the Set Retrieval component – found to be 
buggy. 

With the help of the diagnosis engine the faulty module is 
sequentially localized as shown in Table 5.  

The cases provide some evidence that component-oriented 
consistency-based diagnosis provides the basis for a useful 
debugging aid. More specifically, the level of abstraction 
of the component models appears to be expressive enough 
for the task. This indicates that the tool may indeed 
successfully guide a human debugger without requiring 
him to have deep detailed knowledge about the system 
structure, the modules, recent modifications etc. any more. 
This is possible since this domain knowledge about the 
system is now incorporated into the model. Therefore, at 
least for a set of common sources of errors, a person not 
too experienced with the data warehouse system can 
perform debugging, which was previously impossible. 

7. Future Work  

In this paper, we described the models for consistency-
based debugging of a data warehouse application and its 
validation. So far, only the diagnostic part has been 
realized. For a real debugging aid, a module has to be 
integrated that proposes “probes”, i.e. inspection of 
persistent data and rerunning process steps. More scenarios 
will be treated to establish the basis for making a business 
case that justifies the development of a tool for everyday 
use in this area. 

Table 4: Debugging Trace for Scenario 1. The evidence is incrementally added in order to obtain focused diagnoses as 
is shown by the monotonically shrinking diagnosis set. “X” means that the respective module is no longer a (minimal) 
diagnosis 
Evidence 1: Output duration 

total is less than expected 
Evidence 2: Set property of 

Result Set output by Set 
Retrieval is Wrong 

Evidence 3: TimeInfo of 
CDRs present in data 
warehouse is Wrong 

Evidence 4: TimeInfo of 
CDRs output of mediation 

module is Ok 
Source to system Source to system Source to system X 

File transfer File transfer X X 
Value decoding Value decoding Value decoding Value decoding 
Normalization Normalization Normalization Normalization 
Aggregation Aggregation Aggregation Aggregation 

DW file transfer DW file transfer X X 
Data warehouse Data warehouse X X 

Query construction Query construction X X 
Set retrieval Set retrieval X X 

Set summation X X X 
Explanation: With the 

initial symptom, all 
components are candidates 

for fault localization. 

Explanation: Since output 
of Set Retrieval itself is 

Wrong, it means fault has 
occurred at or before this 

component. 

Explanation: All 
components downstream of 

this new observation are 
exonerated. 

Explanation: All 
components upstream of this 
observation are exonerated 

since, till this point, the 
values are Ok. 



 
 
 
Table 5: Diagnosis Sequence for Scenario 2 showing the monotonically decreasing diagnosis set size, ultimately 
narrowing down to the faulty component. “X” means that the respective module is no longer a (minimal) diagnosis 
Evidence 1: Output 
subscriber count is 
less than expected 

Evidence 2: Set 
property of output by 
Set Retrieval is 
Wrong 

Evidence 3: Set 
property of result set 
output by data 
warehouse is Ok 

Evidence 4: 
TimeInfo of CDR in 
data warehouse is Ok 

Evidence 5: AcctInfo 
of CDR in data 
warehouse is Ok 

Source to system Source to system Source to System Source to system X 
File transfer File transfer X X X 

Value decoding Value decoding X X X 
Normalization Normalization X X X 
Aggregation Aggregation Aggregation X X 

DW file transfer DW file transfer X X X 
Data warehouse Data warehouse Data warehouse Data warehouse X 

Query construction Query construction X X X 
Set retrieval Set retrieval Set retrieval Set retrieval Set retrieval 

Set summation X X X X 
Explanation: With 
the initial symptom, 
all components are 
candidates for fault 

localization. 

Explanation: Since 
output of Set Retrieval 

itself is Wrong, it 
means fault has 

occurred at or before 
this component. 

Explanation: All 
components 

modifying the set 
property of the CDRs 

upstream are 
exonerated. 

Explanation: All 
components 

modifying the 
timeInfo property of 
the CDRs upstream 

are exonerated. 

Explanation: All 
components 

modifying the 
acctInfo property of 
the CDRs upstream 
are exonerated, thus 

narrowing down to the 
correct fault 
localization. 
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