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Abstract

The syntax, semantics and an axiom system for an extension
of Propositional Dynamic Logic (PDL) for order of magni-
tude qualitative reasoning which formalizes the concepts of
closeness and distance is introduced in this paper. In doing
this, we use some of the advantages of PDL: firstly, we ex-
ploit the possibility of constructing complex relations from
simpler ones for defining the concept of closeness and other
programming commands such as while . . . do and repeat . . .
until; secondly, we employ its theoretical support in order to
show that the satisfiability problem is decidable. Moreover,
the specific axioms of our logic have been obtained from the
minimal set of formulas needed in our definition of qualitative
sum of small, medium and large numbers. We also present
some of the advantages of our approach on the basis of an
example.

Introduction
The area of research within Artificial Intelligence that au-
tomates reasoning and problem solving about the physical
world is called Qualitative Reasoning (QR). It creates non-
numerical descriptions of systems and their behaviour, pre-
serving important behavioural properties and qualitative dis-
tinctions. Successful application areas include autonomous
spacecraft support, failure analysis and on-board diagnosis
of vehicle systems, automated generation of control soft-
ware for photocopiers, conceptual knowledge capture in
ecology, and intelligent aids for human learning. Order
of magnitude reasoning is a part of QR which stratifies
values according to some notion of scale (Raiman 1991;
Dague 1993; Sánchez, Prats, and Piera 1996; Nayak 1994).

There are different approaches in the literature (Bennett et
al. 2002; Wolter and Zakharyaschev 2002; Duckham et al.
2006) for using logic in QR that face the problem about the
soundness of the reasoning supported by the formalism, and
try to give some answers about the efficiency of its use. In
particular, multimodal logics dealing with order of magni-
tude reasoning have been developed in (Burrieza and Ojeda-
Aciego 2005; Burrieza, Muñoz, and Ojeda-Aciego 2007)
defining different qualitative relations (order of magnitude,
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negligibility, non-closeness, etc.) on the basis of qualitative
classes obtained by dividing the real line in intervals (Travé-
Massuyès et al. 2005).

The syntax, semantics and an axiom system for a logic
which formalizes the concepts of closeness and distance are
introduced in this paper. To do this, we use the advan-
tages of Propositional Dynamic Logic (Harel, Kozen, and
Tiuryn 2000; Mirkowska and Salwicki 1987; Blackburn and
Van Benthem 2007), mainly the possibility of constructing
complex relations from simpler ones. Some recent appli-
cations of PDL in AI can be seen in (van Benthem, Ei-
jck, and Kooi 2006; Heinemann 2007; Bugaychenko and
Soloviev 2007; Bollig, Kuske, and Meinecke 2007). In our
case, we define the concept of closeness as a program ob-
tained by the union of the sum of classes representing zero,
positive and negative small numbers. Moreover, we intro-
duce some nominals in order to represent the different qual-
itative classes, for this reason we can say that our logic is
a part of Combinatory PDL (Areces and ten Cate 2007;
Passy and Tinchev 1991). This work continues the line
of (Burrieza, Muñoz, and Ojeda-Aciego 2008) about us-
ing PDL in the framework of order of magnitude reasoning,
however it introduces some differences, for example, here
we use constants to represent the qualitative classes instead
of the milestones which divide them, introducing an order-
ing only in the set of qualitative classes. This makes the ap-
proach more heavily founded on quantitativeness. Further-
more, this paper is an step forward in the formalization for
two main reasons. Firstly, it gives a syntactic approach by
presenting an axiom system where the specific axioms have
been obtained from the minimal set of formulas needed in
our definition of qualitative sum of small, medium and large
numbers. Secondly, we have used the theoretical support of
PDL in order to prove the decidability of the satisfiability
problem in this logic.

The paper is organized as follows. In Section 2, the syntax
and semantics of the proposed logic is introduced, together
with an example of application of our logic. In Section 3, we
give an axiom system for our logic and in Section 4 the de-
cidability of the problem of satisfiability is proved. Finally,
some conclusions and prospects of future work are presented
in Section 5.



Syntax and Semantics
In order to introduce the language of our logic, we consider a
set of formulas Φ and a set of programs Π, which are defined
recursively on disjoint sets Φ0 and Π0, respectively. Φ0 is
called the set of atomic formulas which can be thought as
abstractions of properties of states. Similarly, Π0 is called
the set of atomic programs which are intended to represent
basic instructions.

Formulas:
• Φ0 = V ∪ C, where V is a denumerable set of propo-

sitional variables and C = {nl, nm, ns, 0, ps, pm, pl}.
The elements of C are intended to represent, respec-
tively the qualitative classes of “negative large”, “nega-
tive medium”, “negative small”, “zero”, “positive small”,
“positive medium”, and “positive large” numbers.

• If ϕ and ψ are formulas and a is a program, then ϕ → ψ
(propositional implication), ⊥ (propositional falsity) and
[a]ϕ (program neccesity) are also formulas.

Programs:
• Π0 = {+? | ? ∈ C}.
• If a and b are programs and ϕ is a formula, then (a; b)

(“do a followed by b”), a ∪ b (“do either a or b, non-
deterministically”), a∗ (“repeat a a nondeterministically
chosen finite number of times”) and ϕ? (“proceed if ϕ is
true, else fail”) are also programs.

We now define the semantics of our logic. A model M is
a tuple (W,m), where W is a non-empty set divided in 7
qualitative classes, chosen depending on the context (Travé-
Massuyès, Ironi, and Dague 2003), denoted for simplicity
also by {nl, nm, ns, 0, ps, pm, pl} and m is a meaning func-
tion such that m(p) ⊆ W , for every propositional variable,
m(?) = ?, for every ? ∈ C and m(a) ⊆ W ×W , for all
program a. Moreover, for every formula ϕ and ψ and for all
programs a, b, we have:

• m(ϕ→ ψ) = (W rm(ϕ)) ∪m(ψ)
• m(⊥) = ∅
• m([a]ϕ) = {w ∈ W : for all v ∈ W, if (w, v) ∈
m(a) then v ∈ m(ϕ)}

• m(a ∪ b) = m(a) ∪m(b)
• m(a; b) = m(a);m(b) (composition of relations m(a)

and m(b))
• m(a∗) = m(a)∗ (reflexive and transitive closure of rela-

tion m(a)).
• m(ϕ?) = {(w,w) : w ∈ m(ϕ)}
The following properties are required for our atomic pro-
grams:

• m(+ps) is a relation on W such that:

1. m(+ps)(nl) ⊆ nl ∪ nm
2. m(+ps)(nm) ⊆ nm ∪ ns
3. m(+ps)(ns) ⊆ ns ∪ 0 ∪ ps
4. m(+ps)(ps) ⊆ ps ∪ pm

5. m(+ps)(pm) ⊆ pm ∪ pl
6. m(+ps)(pl) ⊆ pl

• m(+pm) is a relation on W such that:

1. m(+pm)(nl) ⊆ nl ∪ nm ∪ ns
2. m(+pm)(nm) ⊆ nm ∪ ns ∪ 0 ∪ ps ∪ pm
3. m(+pm)(ns) ⊆ ps ∪ pm
4. m(+pm)(ps) ⊆ pm ∪ pl
5. m(+pm)(pm) ⊆ pm ∪ pl
6. m(+pm)(pl) ⊆ pl

• m(+pl) is a relation on W such that:

1. m(+pl)(nm) ⊆ ps ∪ pm ∪ pl
2. m(+pl)(ns) ⊆ pm ∪ pl
3. m(+pl)(ps) ⊆ pl
4. m(+pl)(pm) ⊆ pl
5. m(+pl)(pl) ⊆ pl

• m(+ns), m(+nm) and m(+nl) are given similarly and
m(+0) is defined such thatm(+0) = {(w,w) | w ∈W}.

Notice that the properties required for the specific atomic
programs are intended to reflect intuitive properties of qual-
itative sum. For example, m(+ps)(pl) ⊆ pl means that the
sum of a positive small number plus a positive large number
has to be a positive large number, and similarly for the rest
of properties.

Given a model M = (W,m), a formula ϕ is true in
u ∈ W whenever we have that u ∈ m(ϕ). We say that
ϕ is satisfiable if there exists u ∈ W such as ϕ is true in u.
Moreover, ϕ is valid in a modelM = (W,m) if ϕ is true in
all u ∈ W , that is, if m(ϕ) = W . Finally, ϕ is valid if ϕ is
valid in all models.

The informal meaning of some of our connectives is given
as follows:
• 〈+ps〉ϕ is true in u iff there exists u′, obtained by adding

a positive small number to u, such that ϕ is true in u′.
• 〈nl?〉ϕ is true in u iff u is a negative large number and ϕ

is true in u.
• 〈+∗ps〉ϕ is true in u iff there exists u′, obtained by adding

a finitely many small positive numbers to u, such that ϕ
is true in u′.

As stated above, one of the main advantages of using PDL is
the possibility of constructing complex programs from ba-
sic ones. As a consequence, following the ideas presented
in (Burrieza, Muñoz, and Ojeda-Aciego 2008), we can use
our connectives in order to represent the relations of close-
ness and distance. Thus, for any formula ϕ, we define the
modal connectives [c] and [d] as follows:

[c]ϕ = [+ns ∪+0 ∪+ps]ϕ

[d]ϕ = [+nl ∪+pl]ϕ
The intuitive interpretation of the closeness relation is that x
is close to y if, and only if, y is obtained from x by adding a
small number. On the other hand, x is distant from y if and
only if y is obtained from x by adding a large number.



The following example was presented in (Burrieza, Muñoz,
and Ojeda-Aciego 2007) for a multimodal logic. In this case,
the use of PDL gives us many advantages, such as the pos-
sibility of expressing not only closeness and distance, but
also some programming commands such as while. . . do and
repeat. . . until.

Example Let us suppose that we want to specify the be-
haviour of a device to automatically control the temperature,
for example, in a museum, subject to have some specific
conditions. If we have to maintain the temperature close to
some limit T , for practical purposes any value of the interval
[T − ε, T + ε] for small ε is admissible. This interval can be
considered as ns∪0∪ps in our approach. Moreover, assume
that if the temperature is out of this interval (for example, be-
cause the number of people inside the museum is changing),
it is necessary to put into operation either some heating or
cooling system. We also assume that, when the normal sys-
tem of cooling or heating is operating, a system to maintain
the humidity is needed, and when the extra system is oper-
ating, we also need an extra system of humidification. As
a consequence, the qualitative classes NL, NM, NS ∪ PS, PM
and PL can be interpreted by the formulas: VERY COLD,
COLD, OK, HOT and VERY HOT, respectively. We con-
sider that program +0 means that the system is off; moreover
+ps∪+pm and +pl, mean that a system for heating and extra
heating are operating, respectively. Similarly we consider
the meanings of programs +nm∪+ns and +nl for cooling and
extra cooling operations, respectively. Some consequences
of the previous specification are the following:

1. HOT → ([+pl]VERY HOT ∧ 〈(+nm ∪+ns)∗〉OK)

2. [(¬OK?; +Sys)∗; OK?]OK, being +Sys = +nl ∪ +nm ∪
+ns ∪+ps ∪+pm ∪+pl

3. VERY HOT → [(+nl; (¬OK?; +nl)∗; OK?]OK

4. 0→ [c] OK

5. OK → [d] (VERY COLD ∨ COLD ∨ HOT ∨ VERY HOT)

We give now the intuitive meanings for the previous formu-
lae.

• Formula 1 means that, if the temperature is hot and the
extra heating system is put into operation, then the tem-
perature will be very hot. Moreover, if the temperature
is hot, the temperature becomes OK after finitely many
applications of the cooling system.

• Formula 2 says that while the temperature is not OK, the
system has to be operating, as a consequence, we will ob-
tain the desired temperature.

• Formula 3 is interpreted as if the temperature is very hot,
repeat the application of the extra cooling system until the
temperature is OK.

• Formula 4 means that every value close to the desired tem-
perature is considered OK.

• Formula 5 can be read in this way: if the temperature is
OK, for every distant value, the temperature will be either
very cold or cold or hot or very hot.

If we assume that the system is more efficient (in terms of
energy saving) if the temperature is close to the desired value
OK and if the temperature is distant to these values, the sys-
tem is wasting very much energy. the following formula
must be true:

OK → ([c] efficient ∧ [d] warning)
This formula means that for every temperature close to OK,
the system is running efficiently and if the temperature is
distant to OK, the system is wasting very much energy.

Axiom system
We introduce here the axiom system for our logic.
Axiom schemata for PDL:
A1 All instances of tautologies of the propositional calcu-

lus.
A2 [a](ϕ→ ψ)→ ([a]ϕ→ [a]ψ)
A3 [a](ϕ ∧ ψ)↔ ([a]ϕ ∧ [a]ψ)
A4 [a ∪ b]ϕ↔ ([a]ϕ ∨ [b]ϕ)
A5 [a; b]ϕ↔ [a][b]ϕ
A6 [ϕ?]ψ ↔ (ϕ→ ψ)
A7 (ϕ ∧ [a][a∗]ϕ)↔ [a∗]ϕ
A8 (ϕ ∧ [a∗](ϕ→ [a]ϕ))→ [a∗]ϕ (induction axiom)
We also consider as axioms the corresponding mirror images
of K1–K4.

Axiom schemata for qualitative classes:

QE nl ∨ nm ∨ ns ∨ 0 ∨ ps ∨ pm ∨ pl
QU ?→ ¬# for every ? ∈ C and # ∈ C− {?}
QO1 nl→ 〈+∗ps〉nm

QO2 nm→ 〈+∗ps〉ns

QO3 ns→ 〈+∗ps〉0
QO4 0→ 〈+∗ps〉ps

QO5 ps→ 〈+∗ps〉pm

QO6 pm→ 〈+∗ps〉pl

Axiom schemata for specific programs:

PS1 nl→ [+ps] (nl ∨ nm)
PS2 nm→ [+ps] (nm ∨ ns)
PS3 ns→ [+ps] (ns ∨ 0 ∨ ps)
PS4 ps→ [+ps] (ps ∨ pm)
PS5 pm→ [+ps] (pm ∨ pl)
PS6 pl→ [+ps] pl

PM1 nl→ [+pm] (ns ∨ nm ∨ nl)
PM2 nm→ [+pm] (nm ∨ ns ∨ 0 ∨ ps ∨ pm)
PM3 ns→ [+pm] (ps ∨ pm)
PM4 ps→ [+pm] (pm ∨ pl)
PM5 pm→ [+pm] (pm ∨ pl)



PM6 pl→ [+pm] pl

PL1 nm→ [+pl] (ps ∨ pm ∨ pl)
PL2 ns→ [+pl] (pm ∨ pl)
PL3 ps→ [+pl] pl
PL4 pm→ [+pl] pl
PL5 pl→ [+pl] pl

We also consider as axioms NS1. . . NS6; NM1. . . NM6 and
NL1. . . NL5 by changing in the previous axioms every ap-
pearance of p by n and vice versa.

Z1 〈+0〉ϕ→ [+0]ϕ
Z2 [+0]ϕ→ ϕ

Inference Rules:

(MP) ϕ,ϕ→ ψ ` ψ (Modus Ponens)
(G) ϕ ` [a]ϕ (generalization)

It is easy to establish that the following are derived rules of
this system (Harel, Kozen, and Tiuryn 2000):
(I) ϕ→ [a]ϕ ` ϕ→ [a∗]ϕ (invariance)
(D) ϕ→ ψ ` [a]ϕ→ [a]ψ (distributivity)
Notice that axioms A1. . . A8 are classical for this type of
logics. The rest ones have the following intuitive meaning:

• QE and QU mean the existence and uniqueness of the
qualitative classes, respectively. Q01–Q06 represent the
ordering of these qualitative classes.

• PS1–PS6, PM1–PM6 and PL1–PL5; the respective ones
for negative numbers and 01–06 represent the desired
properties of our atomic specific programs.

It is straightforward that all the previous axioms are valid
formulas and that the inference rules preserve validity. For
this reason, we can conclude that our system is sound, that
is, every theorem is a valid formula.

Decidability
In order to obtain the decidability of the satisfiability prob-
lem, we prove the small model property. This property says
that if a formula ϕ is satisfiable, then it is satisfied in a model
with no more than 2|ϕ| elements, where |ϕ| is the number of
symbols of ϕ. This result can be obtained by the technique
of filtrations used in modal logic (Blackburn, de Rijke, and
Venema 2001). However, while in modal logic it is used the
concept of subformula, in PDL we have to rely on the Fisher-
Lander Closure. All the results in this section can be proved
in a standard way. For more details, see (Harel, Kozen, and
Tiuryn 2000).

First of all, we define by simultaneous induction the fol-
lowing two functions, being Φ the set of formulas, Π the set
of programs of our logic and for every ϕ,ψ ∈ Φ, a, b ∈ Π:

FL : Φ→ 2Φ FL2 : {[a]ϕ | a ∈ Π, ϕ ∈ Φ} → 2Φ

(a) FL(p) = {p}, for every propositional variable p.
(b) FL(?) = ?, for all ? ∈ C.

(c) FL(ϕ→ ψ) = {ϕ→ ψ} ∪ FL(ϕ) ∪ FL(ψ)
(d) FL(⊥) = {⊥}
(e) FL([a]ϕ) = FL2([a]ϕ) ∪ FL(ϕ)
(f) FL2([a]ϕ) = {[a]ϕ}, being a an atomic program.
(g) FL2([a ∪ b]ϕ) = {[a ∪ b]ϕ} ∪ FL2([a]ϕ) ∪ FL2([b]ϕ)
(h) FL2([a; b]ϕ) = {[a; b]ϕ} ∪ FL2([a][b]ϕ) ∪ FL2([b]ϕ)
(i) FL2([a∗]ϕ) = {[a∗]ϕ} ∪ FL2([a][a∗]ϕ)
(j) FL2([ψ?]ϕ) = {[ψ?]ϕ} ∪ FL(ψ)

FL(ϕ) is called the Fisher-Lander closure of formula ϕ.
The following result bounds the number of elements of

FL(ϕ), denoted by |FL(ϕ)|, in terms of |ϕ|. It is proved
by simultaneous induction following the ideas presented
in (Harel, Kozen, and Tiuryn 2000), taking into account our
specific definition of FL(?) = ?, for all ? ∈ C, in the basis
case of this induction.

Lemma 1
(a) For any formula ϕ, |FL(ϕ)| ≤ |ϕ|.
(b) For any formula [a]ϕ, |FL2([a]ϕ)| ≤ |a|, being |a| the

number of symbols of program a.

We now define the concept of filtration. First of all, given
a formula ϕ and a model (W,m), we define the following
equivalence relation on W :

u ≡ v def⇐⇒ ∀ψ ∈ FL(ϕ)[u ∈ m(ψ) iff v ∈ m(ψ)]

The filtration structure (W,m) of (W,m) by FL(ϕ) is de-
fined on the quotient set W/ ≡, denoted by W , and the
qualitative classes in W are defined, for every ? ∈ C, by
? = {u | u ∈ ?}. Furthermore, the map m is defined as
follows:

1. m(p) = {u | u ∈ m(p)}, for every propositional, vari-
able p.

2. m(?) = m(?) = ?, for all ? ∈ C.
3. m(a) = {(u, v) | ∃u′ ∈ u and ∃v′ ∈
v such that (u′, v′) ∈ m(a)}, for every atomic program a.

m is extended inductively to compound propositions and
programs as described previously in the definition of model.

The following two Lemmas are the key of this section
and are proved following also the ideas presented in (Harel,
Kozen, and Tiuryn 2000). To do this, we have to take into
account that our definition of Fisher-Lander closure includes
the qualitative classes and that the properties required in our
models for atomic programs, such asm(+ps)(nl) ⊆ nl∪nm,
are maintained in the filtration structure, as a direct conse-
quence of our previous definitions.

Lemma 2 (W,m) is a finite model.

Lemma 3 (Filtration Lemma) Let (W,m) be a model and
(W,m) defined as previously from a formula ϕ. Consider
u, v ∈W .

1. For all ψ ∈ FL(ϕ), u ∈ m(ψ) iff u ∈ m(ψ).



2. For all [a]ψ ∈ FL(ϕ),
(a) if (u, v) ∈ m(a) then (u, v) ∈ m(a);
(b) if (u, v) ∈ m(a) and u ∈ m([a]ψ), then v ∈ m(ψ).

As a consequence or the previous Lemmas, we can give the
following result.

Theorem 1 (Small Model Theorem) Let ϕ a satisfiable
formula, then ϕ is satisfied in a model with no more than
2|ϕ| states.

Proof: If ϕ is satisfiable, then there exists a model (W,m)
and u ∈ W such that u ∈ m(ϕ). Let us consider FL(ϕ)
the Fisher-Lander closure of ϕ and the filtration model
(W,m) of (W,m) by FL(ϕ) defined previously. From
Lemma 2, (W,m) is a finite model and by Lemma 3 (Filtra-
tion Lemma), we have that u ∈ m(ϕ). As a consequence, ϕ
is satisfied in a finite model. Moreover, W has no more ele-
ments as the truth assignments to formulas in FL(ϕ), which
by Lemma 1 is at most 2|ϕ|.

Conclusions and future work
A PDL for order of magnitude reasoning has been intro-
duced which deals with qualitative relations as closeness and
distance. An axiom system for this logic has been defined
by including as axioms the formulas which express syntac-
tically the needed properties. Moreover, we have shown the
decidability of the satisfiability problem of our logic.

As a future work, we are working in the proof of com-
pleteness of the given axiom system and the study of com-
plexity of the satisfiability problem. Moreover, we are try-
ing to extend this approach for more relations such as a
linear order and negligibility, by maintaining decidability
and completeness. Finally, we have planned to give a re-
lational proof system based on dual tableaux for this logic
in the line of (Burrieza, Ojeda-Aciego, and Orłowska 2006;
Golińska-Pilarek and Muñoz Velasco 2009).
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