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Abstract

Envisioning has been used extensively to model be-
havior of physical systems. Envisioning generates
the qualitatively distinct possible behaviors with-
out numerically simulating every possible set of
input conditions and model parameters. This pa-
per applies envisioning to analyze course of ac-
tion (COA) diagrams to determine the qualitatively
distinct outcomes of military operations. In or-
der to avoid the combinatorial explosion of pos-
sible states, this envisioner factors non-interacting
units into separate envisionment threads. The envi-
sioner uses Assumption-Based Truth Maintenance
to further limit combinatorial explosion and esti-
mate probability of outcomes. We illustrate the per-
formance of the factored envisioner on a variety of
examples provided by military experts. We analyze
its scaling performance and demonstrate its ability
to track operations from sparse observations.
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1 Introduction

Military planners generate courses of action (COAs) to de-
scribe how they intend to achieve their goals. COAs are de-
scribed using a combination of text and graphics (Figure 1).
Ideally, in the US Army, a commander generates several sig-
nificantly distinct COAs, and wargames them against multi-
ple COAs hypothesized for enemy forces. This wargaming
process has several benefits. First, it helps find weaknesses
in COAs. Second, it forces commanders and their staffs to
think about what the other side might be planning, which sets
up expectations that can be useful during operations. Unfor-
tunately, this process is currently carried out by hand, mak-
ing it time-consuming. Planning time is often at a premium,
so shortcuts are often taken, degrading the quality of the re-
sults. Having automated support for envisioning possible fu-
tures could potentially offer valuable assistance to comman-
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ders and their staffs. By rapidly generating possible futures,
subtle advantages or “black swan” disasters could be more
easily found.

We believe that, with the right advances, the qualitative
reasoning technique of envisioning could provide such au-
tomated assistance. Qualitative representations provide a nat-
ural fit to the mental models of military commanders. Com-
manders divide terrain up into functionally significant pieces,
and in the early stages of planning, focus only on the actions
that directly support achieving their goals, without worrying
about logistics or other supporting concerns. Wargaming in
military decision-making processes focuses on discrete, dis-
tinct possible categories of outcomes — in other words, qual-
itative states. However, the military domain is more challeng-
ing than any domain in which envisioning has been previ-
ously applied. The number of “moving parts” is high, as are
the actions they can participate in. Unlike most engineered
systems, where a schematic can be developed to define in
advance possible interactions, potential interactions in mili-
tary reasoning must be detected dynamically. To overcome
these problems, this paper describes the idea of factored envi-
sioning, where we dynamically identify collections of entities
whose behaviors must be reasoned about together.

Section 2 describes our assumed architecture and summa-
rizes aspects of terrain reasoning that are relevant for this pa-
per. Section 3 discusses the rule and COA language we use,
and Section 4 applies classic envisioning to the military do-
main. Section 5 illustrates why factored envisioning is neces-
sary. Section 6 defines the key ideas of factored envisioning,
and Section 7 shows how an ATMS is used to achieve scale-
up. Section 8 shows how large envisionments can be repre-
sented compactly. Section 9 briefly discussed the use of prob-
abilities in tracking possible states, and Section 10 discusses
related and future work.

2 Conceptual architecture and terrain

A simple concept for a battlespace reasoner consists of three
parts: (1) an interface which supports COA entry, using the
standard graphical language used by militaries for units,
tasks, and the features they impose on terrain (e.g., the unit
boundaries in Figure 1), (2) an envisioner which takes a set
of Blue (the friendly side) COAs and a set of Red (the other
side) COAs, and generates a set of qualitative states indicating
all the qualitatively distinct ways that things might turn out,
and (3) a tracker which, given observations during an opera-
tion, assesses which of these states the battle is in, and what
COA Red is following. Our focus here is only on the envi-
sioner, and how to compute probabilities that a tracker would
need.

One of the key factors in military reasoning is terrain. We
use qualitative spatial representations of terrain, based on a
formalization of military terrain analysis techniques [Donlon
& Forbus, 1999]. Qualitative regions are defined both within
the COA and as regions implied by the COA. Examples of
specifically defined COA regions include engagement areas
and avenues of advance. Examples of implied COA regions
include the regions where visibility and/or weapons range en-
velopes intersect along movements specified by the combina-

tion of Blue and Red COAs. Implied COA regions are crucial
to identify because they constitute regions where interactions
can occur. That is, our strategy for detecting interactions in-
volves first finding spatial intersections, filtering those using
temporal constraints to see if relevant units can be in the same
place at the same time, and then considering the nature of
those units and their goals (as assigned within their COAs)
to ascertain what sort of interaction, if any, takes place. We
exploit this strategy below, but otherwise, the details of the
qualitative spatial reasoning we use lie outside the scope of
this paper.

We model military actions using qualitative rules, using a
PDDL-like [McDermott, 1982] rule language for durative ac-
tions [Do & Kambhampati, 2002]. All actions happen over
time. Each action has a distinct beginning, duration and end.
For example, Figure 2 illustrates the action of unit mov-
ing from location from through path path to location to.
At the beginning of the action the unit is located at location
from and at end of the action it is located at location to.

move(unit,from,path,to)

start end

Figure 2: Move action.

(:action move
:parameters (?unit - unit ?from - location ?path - path
?to - location)
:condition (and (at start (location ?2unit ?from))
(at start (trafficable ?2unit ?path)
(at start (path ?from ?path ?to))
(over all (not (underfire ?2unit))))
reffect (and (over all (location ?unit ?path))
(over all (decreasing (distance ?unit ?to)))
(at end (location ?unit ?to)))
:duration :definite)

unit, location, path and location are distinct
types. The :parameters slot declares all the variables of
the action and their types. : condition indicates properties
which must hold. At the beginning of the action the moving
?unit must be located at location ? £ rom, the unit must be
able to traverse the path (e.g., not too heavy or too wide),
and the path must connect location ? from to location ?to.
Movement is severely restricted if a unit is under fire. The
:effect slot indicates that the unit is on that path for the
entire duration, the distance from the destination is constantly
decreasing and (if the action is not interrupted) at the end the
unit will be at location ?to. :definite indicates the ac-
tion has a definite end time.

attack-by-fire models an attack on a location where
the enemy unit(s) may not be known. A slight extension to
PDDL allows this rule to identify the enemy unit(s) enemy.

(raction attack-by-fire
:parameters (?u - unit ?from - location
?enemy-location - location)
:condition (and (at start (EnemyAtLocation ?u ?enemy-location
?enemy) )
(over all (> (strength ?u) 0))
(over all (location ?enemy ?enemy-location)
(over all (location ?u ?from)))
:effect (and (over all (decreasing (strength ?enemy))
(over all (underfire Zenemy)

(at end (assign (posture ?enemy) defeated)))
:duration :definite)



Blue COA:
« B1 attacks to seize K
+ B2 attacks to destroy R2

R1

Red COA:
+ R1 attacks to seize K
* R2 attacks to fix B2

Figure 1: This COA describes two independent interactions: (1) Both Blue and Red are trying to seize K, and (2) and Red is
trying to prevent Blue from moving further east. The horizontal line with vertical strokes specifies a unit boundary. It’s Blue’s
intent that there will be no interaction across this boundary. Red may have other plans.

We have implemented rules for military tasks frequently used
in COA’s. This includes a set of basic tasks (e.g., movement
and firing) that are commonly used in defining more complex
tasks.

3 COA language

COA’s are described graphically. In the complete system,
commanders enter COA’s graphically on top of terrain maps.
We can also use nuSketch Battlespace [Forbus, Usher, &
Chapman, 2003] to input COAs graphically. For the purposes
of exposition we utilize an extremely simple language for
COA’s which includes:

e A ground action instance such as (move Bl
initialBl AxisB K). Such items are executable
only if their preconditions apply.

o A sequence of COA items which will be executed in or-
der.

e (cease <action> <actor>) to explicitly termi-
nate an ongoing action.

e (if <condition> <coa-items>) foradecision

point.

In our simple COA language the top half of Figure 1 is de-
scribed by:

(move Bl initialBl AxisB K)
(seize Bl K)
(move R1 initialR1l AxisR K)
(seize R1 K)

4 Classical envisioning

In qualitative reasoning one of the most common ways to rep-
resent time is as instants, separated by open intervals, much
like the real line. Each action has a distinct beginning and
end. Many actions can take place simultaneously. A situation

is a bundle of ongoing actions (see Figure 3). The bundle is
minimal: no action can stop and start within the temporal in-
terval. The start time of a situation is the latest of all the start
times of all its actions. The end time of a situation is the earli-
est end time of all its actions. Predicates (except Location)
are constant over the duration of a process. Quantities are pre-
sumed to change monotonically over time.

situationl

situation2 situation3

yuonenys

Figure 3: 6 actions and 4 situations.

The envisioning process [de Kleer & Brown, 1984; Forbus,
1984; Kuipers, 1986] generates a graph of situations which
describes all possible qualitatively distinct possible evolu-
tions of a system. Classical envisioning operates as follows
(see Figure 4):

1. Determine the combined influences on each quantity.

2. Identify all quantities that are changing towards their
limit points.

Find all legal possible orderings for those quantities to
reach their limit points. In worst case if there are n
changing quantities there may be 2" possible endings.
Typically only a small subset of the combinations will
satisfy the conditions.



|
%‘% Done
|

Envision(Q)

Figure 4: Classic envisioning loop. () is initialized to the ini-
tial situation.

4. For each possible ending, compute the next possible sit-

uation by (1) terminating actions which naturally end
or whose preconditions no longer hold (interrupted ac-
tions), (2) starting any new actions whose preconditions
now hold, and (3) adding the new situation to the envi-
sionment.

Consider envisioning Figure 1. Figure 5 describes the re-
sulting envisionment. This envisionment is constructed as fol-
lows:

1.

Two new actions start in situation 1: B1 and R1 simulta-
neously start moving to location K (by decreasing their
distance from their endpoints).

In situation 2 R1 and B1 are moving along their respec-
tive avenues of advance. This situation can end in three
possible ways:

Situation 4 describes the case when B1 arrives at K first.

4. Situation 5 describes the case when R1 arrives at K first.

Situation 3 describes the case when R1 and B1 arrive at
K simultaneously.

Situations 2, 4 and 5 all lead to a common situation 3
where both B1 and R1 fight. As both are reducing the
strengths of the other, there are two possible outcomes:
either Red or Blue’s strength reduces to 0 (in many cases
units disengage before at some limit point greater than
0). The probability of an outcome depends on many fac-
tors, including the arrival time. If B1 arrives early, then
its probability of winning would be higher.

7. Situation 6 where Red wins.

Situation 7 where Blue wins.

5 Why factored envisioning is needed
Consider the COA illustrated in Figure 6:

(move RF1 initialRF1 Axisl Hilll)
(move RF2 initialRF2 Axis2 Hill2)
(move RF3 initialRF3 Axis3 Hill3)

Bl@initialB1
R1@initialR1

S(move B1) S(move R1)

E(move R1) B1@AxisB E(move B1)
R1@AxXisR
B1@AxisB T |B1ex 4
R1@K E(move B1) S(seize B1) R1@AXisR
E(move(R1)|S(seize R1)
-
T~ e o— —

E(move(B1) S(seize B1) S(seize Rl;\\\ B1@K ////S(seize B1) E(move R1) S(seize R1)

R1@K

I(seize B1) E(seize R1)
E(seize B1) I(seize R1

-
-
/Jefeateﬂ - B1@K
R1@K R1@defeated

Figure 5: Envisionment of R1 and B1 generated by our envi-
sioner. Nodes are labeled by their id and operating unit loca-
tions (or “defeated”) and edges are labeled by actions starting
(S), ending (E) or interrupted (I).

RF‘I
I
RF.%‘ “

Figure 6: Simple COA to demonstrate factored envisioning.



The resulting envisionment consists of the 26 situations in
Figure 7. In situation 1 all actions start: RF1, RF2, RF3 start
moving to their destinations. In situation 2, all actions are on-
going and the question is only when each will end, or put
another way, which reaches its destination first. Given n in-
dependent actions, there are 2™ — 1 possible combinations of
ending options.

One of the central tenets of qualitative reasoning is to
only make distinctions which matter. This applies to envi-
sionments as well. As RF1, RF2 and RF3 do not interact,
the envisionment of Figure 7 makes many needless distinc-
tions. The key idea of factored envisioning is avoid grouping
actions that do not interact. In factored envisioning, each sit-
uation describes a potentially partial description of the world,
and each set of actions is grouped into situations which only
interact with each other. Figure 10 illustrates a factored envi-
sionment.

1
RE1@initialRFL
RE2@initialRF2
RF3@initialRF3

RE1@Axis1
RE2@AXis2
RF3@Axis3

RFE1@Axis1
RE2@HILL2
RF3@HILL3

RE1@HILLL
RF2@HILL2

g
RF3@HILL3 RF3@Axis3

7

RE1@AXisL
RF2@HILL2
RF3@AXis3

REI@HILLL
RF2@Axis2
RF3@Axis3

RF1@Axis1
RF2@Axis2
RF3@HILL3

REI@HILLL
RF2@HILL2
RF3@HILL3

Figure 8: With situation merging 26 situations are reduced to
9.

6 Factored Envisioning

The main purpose of factored envisioning is to avoid the ir-
relevant overspecificity and needless exponential explosion in
situations. We need to introduce two properties of situations.
A complete situation describes the positions and actions of all
the units on the battlefield. A kernel situation describes the
positions and actions of some of the units on the battlefield,
but with one additional condition: every unit within the kernel
interacts with every other (perhaps transitively). Intuitively, a
kernel situation is the smallest set of interacting units pos-
sible. In the envisionment in Figure 5 situation 3 is the only
kernel situation as both units are interacting. All the situations
are complete. None of the situations in Figure 7 are kernel.
Factored envisioning uses conventional envisioning as a
subprocedure. Intuitively, factored envisioning proceeds as
follows (see Figure 9). Any situation is partitioned into
its non-interacting kernel situations. The conventional envi-
sioner is invoked on each of those kernel situations (where ev-
ery other unit is hidden). This will produce a set of space-time
tubes or histories [Hayes, 1990]. For every possible space-
time intersection, the factored envisioner constructs a new
kernel situation and invokes the envisioner on this combined

|
%‘% Done
\

J
Add each novelsuccessor 0 Q.

Figure 9: Factored envisioning loop. @ is initialized to the
initial situation.

situation to see if new possible interactions result (this may
result in the construction of a new location). Our algorithm
intersects first by space and then by time. Figure 10 depicts
the envisionment of Figure 6. The ellipitcal top node depicts a
complete situation node comprised of three kernel situations.
Figure 11 describes the factored envisionment of the COA
from the introduction. Node 1 is comprised of two kernels:2
and 3. Kernel situations 2-6-7 describe the movement of R1.
Kernel situations 3-4-5 describe the movement of B1. Node
8 depicts the joining of the two situations and kernel nodel 9
depicts the battle. The battle has two outcomes one in which
Red wins and another in which Blue wins. Nodes 11 and 10
contain two kernel situations each. Although graphically this
envisionment appears more complex, each node in a factored
envisionment only describes a small local state of affairs and
this produces dramatic improvements in envisioning perfor-
mance and subsequent analysis (as discussed in Section 8).
The triangle node is a non-situation to describe that kernel sit-
uations 7 and 5 interact. There are no other interactions. The
three elipitical nodes are non-situation nodes are comprised
of multiple kernel situations.

7 Using an ATMS

The envisionment uses a probabilistic Assumption-Based
Truth Maintenance System to represent ambiguities and per-
form all the needed evidential reasoning [de Kleer, 2008]. Ev-
ery situation and transition is represented by a unique ATMS
node. Consider the envisionment of Figure 5. ATMS node s1
is created to represent situation 1, s2 is created to represent
situation 2 and t1 is created to represent transition from situ-
ation 1 to 2. The following two justifications are added to the
ATMS:
sl —t1,

tl — s2.

However, there are 3 possible transitions from situation 2 cor-
responding to the cases where B1 or R1 reaches K first or
together. These possibilities are represented as follows. The
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Figure 7: 3 non-interacting actions leads to 26 situations without situation merging. For clarity, edge labels have been omitted.

RF1@initialRF1,RF2@initialRF2,RF3@initialRF3

RF1@initialRF1

S(move RF1)

RF1@Axis1

E(move RF1)

RF1@Hill1

RF2@initialRF2

S(move RF2)

RF2@AXxis2
E(move RF2)

RF2@Hill2

RF3@initialRF3

S(move RF3)

RF3@AXis3
E(move RF3)

RF3@HiIlI3

Figure 10: Simple factored envisionment of Figure 6.

I(seize B1 K)E(seize R1 K)

Bl@defeated, R1@K KNI

6]
Bl@defeatgwd} R1@K ﬂ

Figure 11: Kernel envisionment.

usual ATMS nodes are created to represent the three out-
comes and transitions to them (i.e., s3, s4, s5,t3,t4,t5) In
addition, three assumptions (A3, A4, A5) are created to en-
code the exclusive disjunction of the alternatives:

s2 A A3 — t3,

s2 N A4 — 14,
s2 N A5 — b,
t3 — s3,
t4 — s4,
tb — s9,
oneof(A3, A4, A5).

In addition, a probability is assigned to each assumption
which is computed using a more detailed model which con-
siders speed of the units and the terrain they have to cover to
reach K. The outcome of the battle (situation 3) depends both
on both the path taken to reach K, and the properties of the
units. Again two assumptions are created to represent both
outcomes. The probabilities of these assumptions are derived
from more detailed military models.

As a result of this justification structure the ATMS con-
structs a label for each node. This label consists of minimum
sets of assumptions that can be used to derive that node given
the justifications. This label takes the form of prime impli-
cates and is a d-DNNF expression [Darwiche & Marquis,
2002]. The probability of any node can be directly derived
from its label:

pl@)= > ple),
eclabel(x)
and,
p(Ar,.., Ay) =[] A

Thus the PATMS directly computes the prior probability of
every situation.



Of far greater importance for planning is the conditional
probability of reaching some objective B from situation A.
This can be directly computed from the PATMS by:

P(AAB)
P(B|A) = ————
(BI4) = =55
There may be multiple situations which achieve a comman-
der’s intent. The most useful measure of a situation’s desir-
ability is its expected utility:

EU(S) =Y _U(F)P(F|S).
F

(U is usually only non-zero for end-states.) Although proba-
bilities are well-defined all types of situations, utility is only
well-defined for complete situations. Blind alleys or “black
swan” events are situations with significant conditional prob-
ability but with very low expected utility.

ATMS assumptions are also used to keep results of dif-
ferent COA pairs distinct while eliminating redundant envi-
sioning. An assumption is created for every COA to represent
“This COA is being executed.” Thus, if there are 3x3 COAs, 6
assumptions are created. The three assumptions for each side
are mutex. These assumptions have the prior probability of
the particular COA. (However, in most cases the commander
is interested in the conditional properties so the prior on a root
is not that relevant.)

8 Packing

In order to avoid combinatorial explosion in situations it is
important to detect qualitatively similar situations. There will
often be multiple paths to reach a particular situation. Ev-
ery situation will have an ATMS node. Figure 12 makes the
case for merged factored futures graphs. On the vertical axis
are 6 war games and their characteristics. “Unmerged Unfac-
tored” is the number of (complete) situations generated and
their mean size. “Merged Factored” is the number of (ker-
nel) situations and their mean size. The final column “Merged
Unfactored” is the number of (complete) situations and their
mean size. The envisioner includes utilities to move back and
forth from kernel and non-kernel situation descriptions of an
envisionment. The envisioner can move fluidly between ker-
nel and non-kernel situations as needed.

9 Tracker Precision

The objective of the tracker is to identify the actual COA-pair
(and of particular concern the enemy’s COA) during oper-
ations. The commander must be signaled as soon as possi-
ble when there are future situations with low expected util-
ity (typically < 0.5) and high expected probability (typically
> 0.25). When blind alleys arise, the commander must de-
velop new COAs — the aim of this project is to support com-
mander decision making, not do it for him.

One rarely has full information during operations. The in-
comming observations will be scattered and partial. DARPA
provides sample data which is very noisy along all dimen-
sions (time, position, strength, ammunition, fuel, etc.) The

COA properties

Unmerged
Unfactored

Merged
Factored

Merged
Unfactored

situation situation
s s

2 3/7 3/5 89 113 23 16 19 11.8
3 2/5 8/7 130 10.7 18 18 28 10.1
4 3/5 717 369 101 41 1.9 30 1.2
5 3/5 16/6 11324 124 40 1.8 67 13.1
6 3/5 177 133,932 111 61 18 119 12.4

Figure 12: Futures graph sizes.

unreliability of time stamps is particularly challenging. Fig-
ure 13 illustrates the quality of the data we work with. A typ-
ical battle may produce as many as 10,000 such messages
over a couple of hours. What makes tracking even plausible
with such poor data is that the tracker need only distinguish
amongst paths in the futures graphs and typically there are
only a handful to distinguish among at a given time.

A basic Bayesian tracker provides good results on the data
and futures graphs we have tested. We associate a probability
with each possible path and update it with Bayes’ rule after
every message m:

p(P[{m} UM) = aL(P,m)p(P|M).

As time is as noisy as other quantities it has no special status.
The likelihood L(P, m) that message m corresponds to path
P is computed with a simple linear function of the likelihood
scores of the parameters (including time). To compute the
likelihoods we need to translate qualitative ranges into quan-
tities to numerical values. We simply use the mean value of
each range. We use the PATMS probabilities for the transition
probabilities. This approach more than achieves DARPA’s de-
sired metrics for blind alley detection.

10 Related and Future Work

Recently there has been an upsurge in research on adversar-
ial reasoning [Kott & McEneasney, 20071, but we are aware
of no prior approaches which use qualitative representations
extensively or perform envisioning. Cohen’s Abstract Force
Simulator [King et al., 2002] uses numerical Monte Carlo
simulation to identify qualitative regions in parameter spaces.

Within the qualitative reasoning community, [Clancy &
Kuipers, 1997] describes a qualiative simulator, DecSIM
which partions a system into non-interacting collections a
priori using causal ordering. In our approach, the partitions
are determined dynamically because all possible interactions
cannot be determined a priori. Although later versions of Dec-
SIM identify non-interacting collections dynamically it fo-
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Figure 13: This figure illustrates the challenges the tracker
faces on a very simple example. The horizontal axis is re-
ported time and the vertical axis is latitude of a unit. The lines
describe the 5 paths through the futures graph (interpolated as
they are all qualitative states). The circles are the incomming
observation data. The correct path is indicated by the dashed
lines.

cusses only on eliminating “chatter” when all interactions are
known a priori.

The work described here is part of a larger DARPA-
sponsored effort called Deep Green to develop a system that
helps Army commanders and their staff develop robust plans
that can handle a wide range of foreseeable contingencies and
rapidly update them during plan execution as the situation
evolves. Our system is being developed and tested using a
collection of realistic army scenarios created by a small team
of highly regarded subject-matter experts, including a former
commander of the Army’s National Training Center. Signif-
icant interest in transitioning the results of Deep Green have
already been expressed by the Army.

We plan to explore three avenues in future work. First, it
is unclear that PDDL rules are the best representation lan-
guage for military tasks. Some combinations of actions (to
represent decision-making by subordinate commanders) and
processes (to model continuous effects in a composable way)
may provide a more natural way to represent these phenom-
ena. Second, the range of military tasks needs to be further
expanded, to handle a wider range of COAs. Finally, in col-
laboration with military experts, we need to develop the fine-
grained level of models for probability estimation, providing
the input probabilities for particular outcomes which will then
be propagated through the envisionment by the ATMS.
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