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Abstract

Students learn programming much faster when they receive feedback. However,

in programming courses with high student-teacher ratios, it is practically im-

possible to provide feedback to all homeworks submitted by students. In this

paper, we propose a data-driven tool for semi-automatic identification of typical

approaches and errors in student solutions. Having a list of frequent errors, a

teacher can prepare common feedback to all students that explains the difficult

concepts. We present the problem as supervised rule learning, where each rule

corresponds to a specific approach or error. We use correct and incorrect sub-

mitted programs as the learning examples, where patterns in abstract syntax

trees are used as attributes. As the space of all possible patterns is immense, we

needed the help of experts to select relevant patterns. To elicit knowledge from

the experts, we used the argument-based machine learning (ABML) method, in

which an expert and ABML interactively exchange arguments until the model

is good enough. We provide a step-by-step demonstration of the ABML pro-

cess, present examples of ABML questions and corresponding expert’s answers,

and interpret some of the induced rules. The evaluation on 42 Prolog exercises

further shows the usefulness of the knowledge elicitation process, as the models

constructed using ABML achieve significantly better accuracy than the models

learned from human-defined patterns or from automatically extracted patterns.
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1. Introduction

Programming is nowadays a must-have skill for professionals in many disci-

plines, and is becoming a part of basic education in many countries. It is be-

ing taught at many universities and in massive open online courses (MOOCs).

Learning programming requires a great deal of practice. Bloom (1984) has5

shown that students learn much faster when a tutor is available to help select

exercises, explain errors, and suggest possible problem-solving steps. However,

due to high student-teacher ratios at universities – and even more so in MOOCs

– it is practically impossible for human tutors to evaluate each individual work.

One solution is to use an intelligent tutoring system, where students imple-10

ment programs in a controlled environment and receive help whenever needed.

Such systems can be, in some cases, as effective as a human tutor (VanLehn,

2011). The alternative is to let students use their preferred environment, solve

the problem by themselves, submit solutions and then receive automatically

generated feedback. Both approaches, however, rely on a difficult knowledge15

acquisition task: we need to encode the teacher’s knowledge in an explicit form.

To address this problem we propose a machine learning algorithm for learn-

ing rules to distinguish between correct and incorrect programs. These rules

describe different approaches that students used to solve exercises. A rule de-

scribing an incorrect program contains explicit reasons why this program is in-20

correct. Conversely, a rule describing correct programs specifies necessary com-

ponents for a program to be correct. The semantics of these rules is analogous

to constraint-based tutors (Ohlsson, 1992; Mitrovic, 2012), where constraints

specify the necessary properties of correct submissions.

A common problem when using machine learning to build expert systems is25

that the resulting model is too complex and does not mimic the expert’s cogni-

tive processes. It is quite possible to have a system that has high classification
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accuracy but is poor at teaching or even explaining its reasoning because a lot

of knowledge remains implicit (see (Langley & Simon, 1995) or (Voosen, 2017)).

We encountered a similar problem. To learn from student-submitted pro-30

grams, which are labeled as “correct” or “incorrect” according to a set of test

cases, we decided to use patterns from the programs’ abstract syntax trees

(ASTs) as attributes for machine learning. However, the space of all possible

attributes contains many meaningless AST patterns, which cannot be used for

explanation. We therefore needed a programming teacher to specify which AST35

patterns are useful for distinguishing between correct and incorrect programs.

However, the programming teacher was unable to fully express this knowledge

in advance.

Domingos (2007) identified several reasons why combining machine learning

and expert knowledge often fails, and how it should be approached. One of40

the reasons is that the results of machine learning are rarely optimal on the

first attempt. Iterative improvement, where experts and computer improve

the model in turns, is needed. Furthermore, some knowledge is hard to make

explicit. It is known that humans are much better at explaining (or arguing)

particular cases than explicating general knowledge.45

Argument-based machine learning (ABML) (Možina et al., 2007) is an in-

teractive method that helps a domain expert through the mechanism called the

ABML knowledge refinement loop. In the loop, the experts are prompted to

share only that knowledge which the learning system cannot learn on its own –

the experts are asked to provide arguments about selected misclassified exam-50

ples. Since an argument relates to a single example and the link between its

premises and conclusion is presumptive, experts find it easier to explain their

knowledge in this way. In our case, instead of asking the expert for all relevant

patterns, we ask him or her to provide reasons why a certain program was either

correct or incorrect.55

This paper presents the following contributions. We first define abstract-

syntax-tree paterns and how are they extracted. Then we describe a rule

learning algorithm, which bases on the argument-based rule learning algorithm
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ABCN2 (Možina et al., 2007), for learning rules that represent typical ap-

proaches and errors in student solutions of programming assignments. After-60

wards we present an extended version of the ABML refinement loop. In the

evaluation section, we show that the patterns, which are the result of applying

our algorithm on 42 Prolog exercises from our CodeQ tutoring system1, lead to

accurate machine learned models.

2. Related Work65

2.1. Knowledge acquisition for tutoring systems

Domain knowledge for a tutoring system is most often represented with a

rule-based model, which is easily understood and modified by a human. Both

major ITS paradigms represent domain knowledge with rules: model-tracing

tutors use production rules to model the problem-solving process (Anderson70

et al., 1990; Koedinger & Anderson, 1997), while constraint-based tutors use

rules to describe constraints that must hold for every correct solution (Ohlsson,

1992; Mitrovic, 2012).

Creating a human-understandable domain model requires significant knowledge-

engineering effort (Murray, 1999; Folsom-Kovarik et al., 2010). This is especially75

challenging for programming tutors because the process of writing a program

cannot easily be represented as a sequence of well-defined steps. Furthermore, it

is difficult to find meaningful invariant features for comparing programs; most

programming exercises have several alternative solutions with many possible

implementations (Le et al., 2013).80

The first prominent intelligent programming tutor was the LISP tutor (An-

derson et al., 1989) with a domain model consisting of over a thousand man-

ually coded production rules describing LISP programming. Constraint-based

programming tutors include the J-LATTE Java tutor (Holland et al., 2009)

1https://codeq.si/
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and a tutoring system for Prolog (Le et al., 2009), where domain model was85

implemented with weighted constraints.

The knowledge-engineering effort required to construct the domain model

can be reduced by using machine learning to discover domain knowledge auto-

matically. While machine learning has not yet been used to learn a rule-based

domain model for programming, it has been successfully applied to other, more90

well-defined tutoring domains. Koedinger et al. (Koedinger et al., 2003, 2004),

for example, experimented with machine learning to produce production rules

from demonstrations of correct and incorrect solutions for a simple math prob-

lem. The SimStudent project (Matsuda et al., 2015) explores the same idea:

how to effectively learn procedural knowledge from demonstrations provided by95

teachers and students? Nkambou (Nkambou et al., 2011) combined sequential

pattern mining and association rules to learn common patterns of robot arm

manipulations recorded by experts. Suraweera et al. (Suraweera et al., 2010)

suggested an acquisition system for automatically generating constraints from

provided solutions.100

Most contemporary programming tutors detect intent and possible miscon-

ceptions by comparing the student’s program to a set of reference solutions.

Suarez and Sison (Suarez & Sison, 2008), for example, implemented a Java tu-

toring system JavaBugs, which detects the most similar correct program and

extracts discrepancies between it and the student’s program. Another example105

is Ask-Elle (Gerdes et al., 2017), which uses reference programs to generate and

identify different programming strategies for exercises in Haskell. Various other

systems implementing a similar idea are described in (Le, 2016; Keuning et al.,

2016).

Writing reference programs is easier than building an explicit domain model.110

Data-driven tutors reduce the necessary effort even further by mining educa-

tional data to generate feedback. They construct an implicit domain from solu-

tions submitted by students. In most cases, feedback is still generated from the

differences between the student’s program and a previously submitted solution.

Rivers & Koedinger (2015) described a data-driven approach for automatic115
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hint generation. They start by representing the programs as abstract syntax

trees (AST), canonicalize them, and then generate a hint for a student from

the tree-edit distance between the current student’s solution and a reference

solution. In our approach, the first two steps are the same. Instead of using a

distance measure in the third step, we extract patterns from ASTs and combine120

them into rules. The usefulness of rule-based knowledge is broader, as it can

be used to generate hints or it can be used by a teacher to find out what

concepts of the exercise students have problems with. The disadvantage is that

our approach can not be fully automated, because the teachers need to define

meaningful patterns, as described in Section 5.1.1.125

In Codewebs (Nguyen et al., 2014), the authors applied data-driven AST

canonicalization with the goal to search for similar submissions more effec-

tively. They argued that standard search engines for code are not appropriate

for searching trough students solutions, since the differences between solutions

are specific to each exercise. They instead propose to automatically extract130

”code phrases” from AST, that correspond to different approaches. Because of

the large number of all possible patterns, they restrict themselves to subtrees

of AST. In this paper we claim that subtrees are not enough to capture student

errors and approaches, because many meaningful concepts span over different

subtrees. However, similarly as before, generating meaningful patterns across135

subtrees requires significantly more time from an expert.

In another data driven approach, Jin et al. (2012) represented each program

as a linkage graph. In a linkage graph, statements are nodes and edges represents

relations between statements. Albeit they use a different representation, they

have the same goal as AST-based approaches, as they try to cluster programs140

with similar linkage graphs and use clusters to generate hints. We believe that

it would be possible to combine our approach with their representation, which

would result in extraction of meaningful patterns from linkage graphs.

It seems that all data-driven approaches are trying to discover some patterns

in programs submitted by students. Whereas other data-driven approaches de-145

fine a distance between programs and construct feedback based on that, our
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algorithm seeks for meaningful and interpretable patterns. Our approach there-

fore combines ideas from the data-driven methods and ideas from the initial

intelligent tutoring systems, where the goal was to produce an explicit (rule-

based) model of the domain.150

2.2. Structured data mining

Mining programs is closely related to structured data mining, specifically to

graph classification, where the task is to classify a graph into one of the prede-

fined classes. One such problem is predicting whether a molecule (represented

as a graph) is toxic or not. Our problem definition appears to be the same:155

predict whether a program (represented as an abstract syntax tree) is correct or

not. The most often used models for graph classification are kernel-based and

boosting-based methods (Ketkar et al., 2009), however their learned models are

difficult to understand and therefore not appropriate for explanation.

On the other hand, frequent subgraph mining aims at finding explainable and160

interesting patterns in graphs (Jiang et al., 2013). Although this task does not

classify graphs, its automatically extracted patterns could be used as attributes

in our classification methods. In fact, many approaches exercise this strat-

egy (Bringmann et al., 2011). They first mine frequent subgraphs (patterns)

from a given set of learning examples that satisfy some predefined constraints,165

such as minimal support. Then, optionally, the set of learned subgraphs can

be pruned, if the number of unique subgraphs is too large. Afterwards each

selected subgraph becomes a binary feature representing whether a learning ex-

ample contains it or not. The features are then used in a standard machine

learning method to build a classifier. In the evaluation section, we compare our170

semi-automatic technique for pattern extraction with gSpan, a general method

for frequent subgraph discovery (Yan & Han, 2002).

2.3. Incremental machine learning

Acquiring domain knowledge is one of the key tasks in machine learning,

unfortunately a very difficult one. The problem with domain knowledge occurs175

7



when experts are asked to provide general knowledge, which often fails. On the

other hand, asking them to articulate their knowledge iteratively has proved to

be much more efficient (Domingos, 2007; Guid et al., 2012).

There are more and more machine learning studies using iterative improve-

ments. Fails & Olsen (2003) used the term interactive machine learning to180

describe an iterative system for correcting errors of an image segmentation sys-

tem. Since then, researchers have presented many advantages of systems that

allow users to interact with machine learning; either to simply obtain new la-

bels, as in active learning, or to improve training supervised classifiers (Amershi

et al., 2010). Beside having better final performance, such as accuracy score,185

these works report that users also gain trust and understanding of their systems.

A particularly interesting interactive approach to machine learning was in-

troduced by Stumpf et al. (2009), where a user can comment on automatically

generated explanations provided by a learned model. These comments are then

used as constraints in the system when relearning the model. Kulesza et al.190

(2015) called such an interaction Explanatory Debugging, because users iden-

tify bugs in a system by inspecting explanations and then explain necessary

corrections back to the system.

Explanatory Debugging and argument-based machine learning (ABML) share

the same idea: the system starts by explaining the reasons for class value of a195

certain instance to the user, who in turn can, if the explanation is not satis-

factory, provide an alternative reasoning. The system’s behavior then needs to

change to become consistent with the corrected reasoning. According to the clas-

sification of constraint-based machine learning approaches provided by Grossi

et al. (2017), ABML and explanatory debugging belong to the same group of200

algorithms, since they both define constraints at the level of instances, where

class value is linked to specific attribute values of an instance.

The main difference between the approaches is how the user is involved in the

process. Explanatory Debugging tries to improve the end user’s understanding

and trust of the model by providing explanations and enabling users to adjust205

the model’s behavior by accepting feedback during regular use of the system.
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ABML uses arguments to interact with experts. It tries to minimize the ef-

fort that a domain expert needs to exert to build a machine learning model.

ABML will ask for explanations of the most difficult examples (see Section 4 for

a general description of ABML and Section 4.2 for interactions with experts),210

because these explanations are supposedly the most informative given the cur-

rent model. Explanatory Debugging, on the other hand, does not start with

the most difficult examples, as one of its goals is to help the users to build a

mental model of a working machine learning system. Furthermore, in the ex-

isting Explanatory Debugging applications users can not change how data are215

represented internally, but only how different features influence the system’s

inference.

3. Dataset

Our educational data consists of Prolog programs submitted by students us-

ing the online programming environment CodeQ during the Principles of Pro-220

gramming Languages course at University of Ljubljana. The students start with

an empty editor and start programming. When they think that their solution

is ready, they submit it for testing. If their program fails the testing cases,

they will continue working on until they get it right. We selected 42 exercises

with enough submitted programs for machine learning: at least 30 correct sub-225

missions and at least 300 submissions in total. Each program was classified as

correct if it passed a set of predefined test cases, and incorrect otherwise. Our

domain thus covers 42 classification problems with a dichotomous class: correct

vs. incorrect.

To use machine learning we must first represent each program in some at-230

tribute space. Useful attributes will allow us to distinguish between irrelevant

modifications to the program (such as renaming a variable) and modifications

that change the meaning of the program (such as changing a function’s return

value). Such attributes are difficult to define for programming exercises due to

high variability of student programs (Nguyen et al., 2014; Piech et al., 2015).235
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Many different program representations have been used, with either static

(based on programs’ structure, e.g. (Jin et al., 2012)) or dynamic (based on

programs’ runtime behavior, e.g. (Glassman et al., 2015)) attributes. Static at-

tributes are easier to handle because the program does not have to be executed,

and should still give us enough information to identify errors in a program –240

teachers can usually find an error without having to execute a program.

We use static attributes defined in terms of abstract-syntax-tree (AST) pat-

terns, which describe parts of the program’s structure (Lazar et al., 2017). Tree-

based attributes better convey the structure of a program than e.g. using lines

of code or other text-based features. Finally, AST patterns are more general245

than subtrees – as in Codewebs (Nguyen et al., 2014) – because they can en-

code relations between non-contiguous parts of the program. The remainder of

this section describes AST patterns and how they are extracted from student

programs.

The idea for AST patterns comes from tree regular expressions, mainly used250

in the field of natural-language processing (Levy & Andrew, 2006). Just as an

ordinary regular expression is a string describing a set of strings with a certain

structure, an AST pattern is an ordered rooted tree describing a set of ASTs

with a certain structure.

We denote AST patterns using s-expressions. For example, the s-expression255

(a b (c d)) denotes a tree with the root a and two children b and c (in that

order), where the node c has one child d. Using this notation we define patterns

as follows.

The simplest pattern name matches any AST containing a node labeled

name. The pattern (name p1 . . . pk) matches an AST containing a node n260

labeled name with (at least) k distinct children n1 to nk that match, in order,

subpatterns p1 to pk. Additionally, the operator ∗ can be used to match a chain

of zero or more nodes with the same label. For example, the pattern (∗a b)

matches the trees b, (a b), (a (a y b) z), and so on.

We illustrate AST patterns on the following Prolog program implementing265
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the relation sister(X,Y)2:

sister(X,Y):- % X is Y’s sister when:

parent(P,X),

parent(P,Y), % X and Y share a common parent P,

female(X), % X is female, and

X \= Y. % X and Y are not the same person.

text

clause

head

compound

functor

sister

args

var

X

args

var

Y

and

compound

functor

parent

args

var

P

args

var

X

and

compound

functor

parent

args

var

P

args

var

Y

and

compound

functor

female

args

var

X

binop

var

X

\= var

Y

Figure 1: The AST for the sister program, showing two patterns and the leaf nodes inducing

them. Solid red arrows equate the first arguments in the two calls to parent. Dotted blue

arrows encode the necessary condition that X must be female to be a sister.

Figure 1 shows this program’s AST with two patterns. The pattern drawn

with blue dotted arrows encodes the fact that the first argument to the sister

predicate also appears in the call to female. In other words, this pattern states

that X must be female to be a sister. We write this pattern as the s-expression:270

2Binary relations like this one should be read as “X is a sister/parent/. . . of Y”.
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(clause
(head (compound (functor ‘sister’) (args var)))
(∗and (compound (functor ‘female’) (args var))))

The ∗ operator in the last line node ensures that the call to female may

appear anywhere in the clause body (i.e., it may be nested within an arbitrarily

deep chain of and nodes). This allows the pattern to match a program regardless

of any other goals in the clause.

Since students choose different names for variables, we omit actual variable275

names from patterns and instead constrain pattern matching to only return

matches where all var nodes refer to the same variable. In this study we only

consider patterns relating pairs of leaf nodes, because such patterns are easy

to interpret. We regard such patterns as the smallest units of meaning in Pro-

log programs. To model more complex relations, we induce rules that predict280

correctness based on a combination of patterns.

The second pattern in Fig. 1, drawn with solid red arrows, encodes the fact

that the two calls to parent share the first argument; in other words, X and Y

must have the same parent P. This pattern can be written as:

(clause
(∗and (compound (functor ‘parent’) (args var))
(∗and (compound (functor ‘parent’) (args var)))))

Again, the ∗and nodes allow the pattern to match any clause with two calls285

to parent. Like the previous example, this pattern relates two instances of the

same variable in clause body.

These patterns were extracted automatically from student programs. A

pattern is induced for each pair of nodes by traversing the tree upwards and

recording all nodes on the path to the clause node. Any sequences of and nodes290

are replaced with a single ∗and node in the pattern. For each selected leaf node

we also include some local context, such as the predicate name (e.g. parent)

for compound nodes, or the operator in expressions like X+1.

The patterns that occur in at least 5 programs in the learning set form

our attribute space. Initially, we constructed patterns where leaf nodes were295
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referring to the same variable (as in Figure 1). Section 5 demonstrates how

argument-based machine learning was used to extend the set of constructed

patterns to improve classification accuracy for Prolog programs.

4. Argument-based machine learning

An argument is comprised of a series of premises that are intended to give300

a reason for the conclusion. Humans mostly use arguments to justify or ex-

plain their beliefs and sometimes to convince others. In artificial intelligence,

argumentation is a branch that analyzes automatic reasoning from arguments

- how arguments for and against a certain claim are produced and evaluated.

Argument-based machine learning (ABML) is a combination of argumentation305

and machine learning.

ABML uses arguments to elicit and represent background knowledge. While

providing general background knowledge can be a difficult task for the expert,

articulating their knowledge through arguments has proved to be easier. The

reason is that in ABML experts need to argue about one specific case at a time310

and provide knowledge relevant for this case, which does not have to be valid

for the whole domain (Domingos, 2007; Guid et al., 2012).

The arguments are retrieved from an expert through the ABML refinement

loop, where ABML and the expert exchange arguments in turns. Each provided

argument is then attached to a single learning example, while one example can315

have several arguments. A positive argument is used to explain (or argue) why

a certain learning example is in the class as given. In some of the previous ap-

plications we also used negative arguments, which speak in favor of the opposite

class. However, as negative arguments were not needed in this application, we

will, in this paper, refer to positive arguments as arguments. Examples with at-320

tached arguments are called argumented examples. The dialogue in Section 5.1.1

presents several examples of arguments.

An ABML method needs to induce a model that is consistent with given

arguments. That means that the model has to explain the examples using the
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same terms that experts used during argumenting these examples. The reasons325

from the positive argument for a particular example should become a part of

the explanation for the class value of this example, and the reasons from the

negative arguments should be mentioned within the part speaking against the

class value. Such model is therefore more comprehensible from the expert’s

perspective, since it uses the same terms in explanation as the expert (Guid330

et al., 2012).

In a medical domain, for example, a machine learning system might explain

that a patient has pneumonia, because he is a male and he is coughing. A medi-

cal expert could then counter argue, that this person has pneumonia, because he

has high temperature. Then, ABML should induce a new model for automatic335

diagnosis, which would state high temperature (among others) as the reason for

this particular patient with pneumonia. However, note that the system does

not need to mention temperature in explanations of other examples, in fact,

it could even mention low temperature in explanations of other patients with

pneumonia, and that would still not violate the constraint.340

4.1. Argumented examples and ABCN2

A detailed description of argumented examples and the structure of argu-

ments is given in Mozina et al. (Možina et al., 2007). The following description

is a short summary.

Let (X, y) denote a learning example, where X is a feature (or attribute)345

vector and y is a class value. An argumented example is a triple (X, y,A), where

A is a set containing a) positive arguments explaining why is this example in

class y and b) negative arguments explaining why this example should not be

in class y. Each argument ai ∈ A is composed of a conjunction of reasons

r1 ∧ r2 ∧ · · · ∧ rn. Allowed formats of reasons are:350

• Xi = xi specifies that example has selected class value because (or despite)

attribute Xi equals xi,

• Xi < xi (or Xi > xi) argues for (or against) class y because the value of

14



Xi is less than xi (or is larger),

• Xi < (or Xi >) argues for (or against) class y because the value of Xi is355

low (or high).

ABCN2 is an extended version of the CN2 algorithm (Clark & Boswell,

1991) for learning classification rules from argumented examples. The main

difference between the original CN2 and ABCN2 algorithms is in the definition

of the covering relation. In the standard definition used in CN2, a rule covers360

an example if the condition part is true for this example. In ABCN2, a rule

R covers an argumented example if the condition part is true and the rule is

consistent with the arguments. A rule R AB-covers an argumented example

(X, y,A) if:

• All conditions in R are true for X (same as in CN2),365

• R is consistent with at least one positive argument of A.

• R is not consistent with any of the negative arguments of A.

Using AB-covering by itself leads to learning rules consistent with argu-

ments: rules that contain positive reasons and do not contain negative rea-

sons in their conditions. However, we additionally implemented various changes370

that made the algorithm more inefficient. For example, in the original CN2

the initial set of candidate rules contains only the default rule, which is then

repeatedly specialized until all examples are covered. In ABCN2, we also in-

clude the reasons from positive arguments in the initial set of rules, or other-

wise the search heuristics might never guide towards rules that contain reasons375

from positive arguments. The latest version of ABCN2 can be found at https:

//github.com/martinmozina/orange3-abml. All differences between the orig-

inal ABCN2 described in (Možina et al., 2007), the current version of ABCN2,

and CN2 are described in a technical report found at https://ailab.si/abml.
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4.2. ABML refinement loop380

As it is unlikely that an expert will have time to provide arguments for

all learning examples, selecting a subset of examples is important. Therefore,

we have developed the ABML refinement loop, which picks out such critical

examples that are likely to help ABML the most. The procedure consists of the

following steps:385

1. Learn a model with ABML using given data.

2. Find K critical examples and present them to the expert. If no critical

examples were found, stop the procedure.

3. Expert provides arguments for a critical example.

4. Add arguments to the selected example in the data.390

5. Return to step 1.

4.2.1. Selecting critical examples

Critical examples are learning examples, where arguments lead to a more ac-

curate model. In our previous experiments with ABML (see for example (Groznik

et al., 2013)), we simply selected examples with the highest probabilistic error395

and used them as critical examples.

This approach is problematic, since it will often select outliers. As explaining

outliers with arguments will probably not have much impact on the rest of the

data, because the data does not contain similar examples, we instead propose

to select prototypical misclassified examples as critical examples. A prototypical400

misclassified example is prototypical in the sense of indicating a type of error.

We will now describe our approach for selecting K prototypical misclassified

examples. Let pe(x) be probabilistic error of the current model for example

x measured with cross-validation. A prototypical misclassified example should

a) have high pe(x) and b) be similar to other examples with high pe(x). Let

sim(xi,xj) be a function of similarity between xi and xj. Then, to select K

prototypical examples c1, c2, . . . , cK, we need to maximize:

argmax
c1,c2,...,cK

K∑
i=1

∑
x∈Si

sim(ci,x)× pe(x). (1)
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Term Si represents the cluster of learning examples whose closest critical exam-

ple is the critical example ci.

If the similarity function is bounded within interval [0, 1] it can be replaced

by the distance function, dist(xi,xj) = 1 − sim(xi,xj), resulting in a criterion

that needs to be minimized instead of maximized:

argmin
c1,c2,...,cK

K∑
i=1

∑
x∈Si

dist(ci,x)× pe(x). (2)

This formula is exactly the minimization criterion of the weighted K-center

clustering algorithm (pe(x) are weights of instances). We implemented the405

Lloyd (Lloyd, 1982) clustering algorithm and took the centers found by the

algorithm as the critical examples. In this application, we used the standardized

Euclidean distance on the binary features (patterns) used in learning.

4.2.2. Argumenting a single critical example

After the selection of critical examples, the expert needs to provide addi-410

tional domain knowledge for solving a single critical example. The following

five steps describe the process that aims at getting as much relevant informa-

tion as possible.

Step 1: Presenting critical examples to the expert

In this step, critical examples with explanations from the learned model are415

presented to the domain expert. As critical examples are misclassified by the

current model, the current explanation is likely to be wrong. Then, the domain

expert is asked the following question: ”Why is this example in the class as

given?”

Step 2: Adding arguments to the critical example420

The expert answers the previous question using natural language without

considering domain description of the learning data set. The knowledge engineer

then needs to rephrase provided arguments using domain description language

(attributes).
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However, this is not always possible. In the original idea of ABML (Možina425

et al., 2007), the experts were supposed to use only existing attributes in expla-

nations of examples. In the following applications of ABML (see for example

(Možina et al., 2010; Groznik et al., 2013)) this tool turned out to be an effec-

tive tool for selection of new relevant attributes, because experts often related

to properties of instances that were not part of the original attribute space. A430

knowledge engineer then needs to implement the new attribute, or change the

definition of an old one.

In this study, the expert also suggested many new attributes. Additionally

he also suggested some canonicalizations of examples (programs). For instance,

when a program containing the “not” operator became critical, the expert sug-435

gested to replace this operator with “\+”, because these two operators are syn-

onyms. After implementing the suggested change, the dimensionality of the

problem decreased.

When an expert suggests to change the domain description, implement it

and return to Step 1, since the critical example might not be critical anymore.440

Otherwise, continue to the next step.

Step 3: Pruning arguments

In argumentation, to make an argument stronger and less susceptible to

counter-arguments, humans often provide more reasons than are actually needed.

In ABML, too many reasons will result in poor generalization.445

The method evaluates all reasons in provided arguments whether they are

necessary or not. A reason is likely unnecessary if after its removal the argument

does not cover any new examples from the opposite class. The expert then needs

to decide for each of these reasons, whether to keep them in the argument or

not. After removing a single reason from the argument, the pruning procedure450

is repeated.
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Step 4: Discovering counter examples

After arguments are added to the critical example, ABML relearns the com-

plete model using the modified data set. Arguments often apply to many other

examples, and not just to the critical example, therefore these arguments will455

be mentioned in explanations of other examples. When these examples come

from the same class as the critical example, such behavior is not problematic, it

is in fact favorable, since more examples are now explained using the expert’s

terms.

On the other hand, if an argument also affects examples from the opposite460

class, we should check the validity of this argument with the expert. A counter

example is an example from the opposite class that is consistent with a positive

argument provided by the expert, and the induced model mentions this positive

argument in explanation of this counter example.

Step 5: Improving arguments using counter examples465

When a counter example was found, the expert needs to revise the initial

arguments with respect to the counter example. The expert is now asked ”Why

is critical example in one class and why counter example in the other?” The

expert may now revise the original argument and explain the difference between

these two examples. Then return to Step 2.470

4.3. Learning rules for tutoring

ABCN2 is a general rule-learning algorithm for learning rules from argu-

mented examples. However, not all rules are suitable for representing errors

or approaches in programming. In this section, we describe an extension of

the algorithm that allows us to extract relevant and explainable patterns from475

student programs. The extended algorithm is called RL4T (rule learning for

tutoring).

A program is incorrect either because a) it contains some incorrect or buggy

pattern, which needs to be removed or modified, or b) it is missing a relation

(pattern) that should be included before the program can be correct. To discover480
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buggy patterns, we first learn rules for incorrect programs called n-rules. While

learning n-rules, the following constraints are imposed:

1. The classification accuracy (percentage of correct predictions among cov-

ered examples) of each learned rule on learning data should exceed a cer-

tain threshold (we selected 90% in our experiments, since we deemed 10%485

error as acceptable).

2. Each conjunct (attribute-value pair) in rule’s condition should be signifi-

cant with respect to the likelihood-ratio test (Clark & Boswell, 1991) (in

our experiments significance threshold was set to p = 0.05). To validate

a condition of a rule we compared rule’s class distribution (of covered490

examples) with the distribution of the rule without this condition.

3. Each conjunct in rule’s condition should specify the presence of a pattern,

and not absence of a pattern.

The first constraint will lead to learning accurate rules only, hence the condi-

tions of a n-rule will be likely to correspond to a buggy pattern. The second495

constraint requires that all patterns in a rule’s condition are significant, which is

necessary to avoid mentioning spurious patterns in explanations. The last con-

straint assures that the learned rules mention only presence (and not absence)

of patterns. Note that the rules stemming from expert’s positive arguments

were not subjected to these constraints, since these rules were validated by the500

expert during the ABML refinement loop, as demonstrated in Section 5.1.1.

Allowing only present patterns in rule conditions is important, because rules

are meant to be used for explanation. Consider the following example. Let let-

ters A,B,C, . . . denote different AST patterns of submitted programs for some

problem. Let there be two possible solutions of this problem: by implementing505

patterns A and B, or by implementing C and D. Let E,F,G be three com-

mon buggy patterns. Then, if a rule learner may only specify the presence of

patterns, three buggy rules can be learned: “if E then incorrect”, “if F then

incorrect”, and “if G then incorrect”.

Explaining these three rules is straightforward: if a student implemented510
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any of the patterns E, F , or G, then the program would be incorrect. On the

other hand, if absent patterns were allowed in rules, the following n-rule could

appear: “if ¬A and ¬C then incorrect”. The rule is perfectly valid in a logical

sense, since a program cannot be correct if it is missing A and C. However, the

explanation of such a rule is ambiguous, because we do not know whether to515

suggest the student to implement A or C.

To learn rules describing the second type of error, i.e. spotting where stu-

dents miss important patterns, we could try the same approach and learn rules

for the class of correct programs (p-rules). Having accurate rules for correct pro-

grams, the conditional part of these rules would define sufficient combinations520

of patterns that make a program correct.

It turns out that it is difficult to learn accurate rules for correct programs

without specifying absent patterns. Consider again our hypothetical example.

The accuracy of a rule “if A and B then correct” could be significantly lower

than the required 90%, as there might be many programs containing A and525

B, but also including one or more buggy patterns E, F , or G. To produce

an accurate rule, the learner would have to include also the absence of buggy

patterns, for example: “if A and B and ¬E and ¬F and ¬G then correct”.

Learning such long rules can be difficult and it is unlikely that rule learner

will be able to cover all buggy patterns in p-rules. A possible way to circumvent530

that is to first remove programs covered by n-rules. This way all known buggy

patterns are removed from the data and will therefore not be included in p-

rules. However, removing incorrect patterns sometimes removes the need for

including relevant patterns in rules. For example, if all incorrect programs were

removed, then the single p-rule “if true then correct” would suffice, which,535

however, cannot be used to generate explanations.

We achieved the best results by learning p-rules from full data set using the

same constraints as above. However, the requirement to achieve 90% classifica-

tion accuracy was not evaluated on the full learning set, but only on a subset

of examples that were not covered by n-rules. Namely, we first learned a set of540

n-rules, then removed from training set all examples covered by these rules, and
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used the remaining examples in the validation of the 90% classification accu-

racy constraint. Therefore, p-rules can in fact cover many incorrect programs,

as long as these programs are also covered by n-rules.

Even though our main interest is discovery of patterns, we can still use545

induced rules to classify new programs in order to evaluate the quality of rules.

The classification procedure has three steps: 1) if an n-rule covers the program,

classify it as incorrect; 2) else if a p-rule covers the program, classify it as correct;

3) otherwise, if no rule covers the program, classify it as incorrect.

5. Experiments and Evaluation550

In this section we report and discuss the results of learning on a selection of

42 exercises used in our Prolog course. We randomly divided each data set into

learning (70%) and testing (30%) set, where all programs submitted by the same

student were in the same set. Due to this restriction, the percentage of learning

examples was only approximately 70%. Note that all procedures related to555

the ABML refinement loop, such as using cross-validation for detecting critical

examples, can use only learning data.

Initially, the expert (a Prolog teacher) was asked to define a set of relevant

patterns for our classification task. He suggested to use patterns that correspond

to two occurrences of the same variable, because such patterns characterize the560

most common constraints in Prolog programs. Both examples illustrated in

Figure 1 in Section 3 have this structure.

We learned rules for all 42 problems in the same order as they are presented

to students during the lab exercises. We ran the ABML refinement loop only

if the initial classification accuracy of learned rules was less than 90%. For565

example, in the case of the first problem (sister), our method scored 98%,

hence we skipped the ABML loop. The second problem was the aunt problem,

where our method initially achieved only 85.2%, and was, therefore, the first

problem where argument-based approach was used to elicit knowledge from the

domain expert.570
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In the following section, we give a detailed account of the learning process

for the aunt problem. At the end of the section, we describe some of the induced

rules and explain how we intend to use them to improve learning experience of

students. Afterwards, we present results of learning on all 42 problems.

5.1. The aunt exercise575

During the Prolog course, 336 students tried to solve the aunt exercise,

submitting 662 programs in total. Typically, students keep submitting programs

until they submit a correct program, so there is usually one correct program for

each student. Of those 662 programs we used 459 for learning (249 correct, 210

incorrect) and 203 for testing (108 correct, 95 incorrect). The most common580

correct submission was:

aunt(A, B) :-

parent(C, B),

sister(A, C).

The solution states that A is an aunt of B if A is a sister of a parent of B.

There were 57 initial attributes for the aunt problem. In the text, we will

refer to an attribute with a letter a and a number resembling its rank according

to the frequency in the learning data: a0 is the most common attribute, a1 next,585

etc. Using these attributes resulted in 85.2% classification accuracy. The model

contained 9 n-rules and 3 p-rules. As accuracy was below the specified threshold

(90%), we engaged a dialogue between ABML and the domain expert. In the

remainder of this section, we present the most interesting interactions between

the expert and the algorithm in this problem, show some additional interesting590

examples from other problems and, at the end, interpret the final results of the

aunt problem.

5.1.1. A dialogue between ABML and the expert

The first critical example identified by our method was the following correct

program:595
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aunt(A, B) :-

female(A),

parent(C, B),

parent(D, A),

parent(D, C),

A \== C.

The student in this program defined aunt as a female (female(A)) whose parent

(parent(D,A)) is also the grandparent of B (parent(C,B),parent(D,C)). The

student in this case did not think of using the sister relation which would

make the solution simpler. Our rule learning algorithm, however, failed to learn

a rule classifying this program as a correct one.600

Following the steps from the Section 4.2, this example was then presented to

the expert (Step 3). However, the presentation did not include an explanation,

because none of the rules (either n-rules or p-rules) in the initial model covered

this example. Then, the expert was asked: “Why is this program correct?” The

initial expert argument for this program was: “the program is correct because605

aunt is a female and her parent (parent of A) is the same person as the parent of

parent of B.” The knowledge engineer then used four AST patterns to describe

the reasons of this argument (Step 4):

1. Variable A from the head is also mentioned in the female compound (at-

tribute a2):610

(clause
(head (compound (functor ‘aunt’) (args variable)))
(∗and (compound (functor ‘female’) (args variable))))

2. The second variable from the head has a parent (attribute a0):

(clause
(head (compound (functor ‘aunt’) (args (args variable))))
(∗and (compound (functor ‘parent’) (args (args variable)))))

3. The first variable from the head also has a parent (attribute a4):

(clause
(head (compound (functor ‘aunt’) (args variable)))
(∗and (compound (functor ‘parent’) (args (args variable)))))

4. A pattern describing the grandparent relation – some parent has a parent

(attribute a10):
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(clause
(∗and (compound (functor ‘parent’) (args variable))
(∗and (compound (functor ‘parent’) (args (args variable)))))

The full argument attached to this learning example was the conjunction615

of the four reasons above. In the following step of the process (Step 3), we

found out that the fourth reason (attribute a10) seems to be unnecessary, since

programs having the first three reasons, at least in our data set, always contained

the fourth reason. After consulting it with the expert, we decided to remove

the fourth pattern from the argument.620

Using the argument, ABML was able to induce the following new rule:

IF a2==T AND a0==T AND a4==T AND a8==T THEN correct [13, 21]

The learned rule covers 21 correct programs and 13 incorrect. A careful reader

might notice that this rule does not fulfill the first constraint from the RL4T

algorithm, as the accuracy is below 90%. Within the definition of the RL4T

algorithm, we mentioned that rules AB-covering critical examples do not need625

to meet these constraints, because ABML could otherwise not be able to find a

rule covering the critical example.

The first three conditions embody the above argument by stating that the

attributes a2, a0, and a4 must be true (present in the program). The fourth

condition (attribute a8) was added by the rule learner. This attribute represents630

a pattern connecting the first variable from the head and the first variable from

the \== goal. In the critical example, this pattern connects the two occurrences

of variable A:

aunt(A, B) :-

...

A \== C.

However, there were many counter examples to the rule presented above. A

sample counter example was:635
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aunt(A, B) :-

parent(C, B),

parent(D, C),

parent(D, A),

female(A),

A \== B.

In this case, a student compared A to B (A \== B) instead of A to a parent of

B. After adding pattern a14 specifying that a variable from the \== goal should

also be a parent, the final rule covered 15 correct programs and 8 incorrect:

IF a2==T AND a0==T AND a4==T AND a14=T and a8==T THEN correct [8, 15]

During the examination of the remaining 8 incorrect examples, we found

that 5 of them are covered by n-rules and are therefore not problematic. The640

remaining three, however, exhibited uncommon mistakes hard to characterize.

Therefore, we decided to accept the current rule as good enough and moved on.

We will now describe how the remaining critical examples were solved, however

with much less detail. The second critical example was a correct program that

appears almost the same as the first one:645

aunt(A, B) :-

female(A),

parent(C, B),

parent(D, A),

parent(D, C),

A \= C.

In this case, the \= inequality operator was used instead of \==. The differ-

ence is that the former operator checks that the two variables cannot be unified

(i.e. they cannot be instantiated to the same value), whereas the latter only

validates whether left and right sides are not literally equal.

This is the first case where our expert was thinking about canonicalization.650

The question was whether it makes sense to replace all \= operators with \==.

He decided against it, because in general the distinction between operators is

important, although it might work in the case of the aunt problem. Instead, we

added an almost identical argument as in the case of the first critical example.
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The alternative would be to use data-driven canonicalization (Nguyen et al.,655

2014), where canonicalization is inferred automatically for each problem.

In the third critical example, the student used the or(;) connective (dis-

junctions). It states that aunt is a sister of either father or mother:

aunt(A, B) :-

sister(A, C),

(father(C, B) ; mother(C, B)),

female(A).

In this case, the expert explained that this is a correct program, because

student is referencing mother or father, which is the same as parent. However,660

as it was difficult to capture the semantics of the or clause with an AST pattern,

we split all Prolog programs containing the or operator into two equivalent

clauses:

aunt(A, B) :- aunt(A, B) :-

sister(A, C), sister(A, C),

father(C, B), mother(C, B)),

female(A). female(A).

We implemented the suggested change and moved to the next iteration. It

turned out that canonicalization did not solve our previous critical example,665

since the next critical example was the same. Yet, this does not mean that

splitting clauses having or operator is generally bad, in fact, it was useful in

many other cases. The true problem of the current critical example are relations

father and mother, which are too rare to be present among attributes, as a

pattern must occur within five or more programs to become an attribute. We670

could therefore not explain this example and decided to move to the next critical

example.

The fifth critical example also contained the or operator, but with brother

and sister goals. Its canonicalized version is:

aunt(A, B):- aunt(A, B):-

female(A), female(A),

parent(C, B), parent(C, B),

brother(C, A). sister(C, A).
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The clauses state that aunt A is a female that has a brother or a sister who is675

the parent of B. The initial argument why this programs is correct was: “the

program is correct because the body states that A is a female and she has a sister

or a brother”. However, adding this argument to the critical example resulted

in the following counter-example:

aunt(A, B) :-

female(A),

parent(C, B),

brother(C, A) ; sister(C, A).

The problem can be seen better with the canonicalized program:680

aunt(A, B) :- aunt(A, B) :-

female(A), sister(C, A).

parent(C, B),

brother(C, A).

The program lacks parentheses around the part where or operator links brother

and sister. After extending the argument with another reason that connects

variable C from the parent goal to variable C in the sister goal, the algorithm

did not find any other counter-examples.

The sixth critical example was almost identical to the first critical example:685

aunt(A, B) :-

female(A),

parent(C, A),

parent(C, D),

parent(D, B).

C \== A.

This example is different from the first one, because the variables in goal C \== A

are in reversed order. Since order is important in pattern representation, the

same rule cannot cover both examples. We decided to change the domain de-

scription: the patterns containing equality or inequality binary operators should

put all arguments on the left side regardless of where they are in the original690

program. After the change, this example was correctly classified.

There were five more critical examples. However, as arguments in those cases

were similar to the arguments shown above, we will not describe the remaining

five iterations.
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5.1.2. Some interesting examples from other exercises695

Most arguments for the aunt exercise lead to adding new constraints for rule

learning. However, as later demonstrated, we benefited more from introduction

of new transformations and inclusion of new attributes, because these additions

were useful also for other exercises, and not just for the specific problem. This

section demonstrates two such cases.700

In the memb exercise, the students have to implement a program that checks

whether an element is a member of a list or not: memb(X,L) is true if X is

member of list L. The first critical example was:

memb(A, B) :-

B = [A|C].

memb(A, B) :-

B = [D|C],

memb(A, C).

This program was critical, because students usually do not use auxiliary vari-

ables, such as B in this case, but simply use the expanded list form in the head.705

Accordingly, the first clause above is equivalently stated as:

memb(A, [A|C]).

Although these two clauses are semantically equivalent, they are not syntacti-

cally equivalent, and therefore result in different patters. To solve this problem,

we implemented canonicalization, where such auxiliary variables are removed

and replaced by corresponding values.710

In the conc exercise, students have to implement a program for concatena-

tion of two lists conc(L1, L2, L3), where L1 and L2 are concatenated into L3.

During the execution of ABML refinement loop we identified another interesting

problem. The first critical example was, as a surprise to us, the most common

correct solution:715

conc([], A, A).

conc([B|C], D, [B|E]) :-

conc(C, D, E).

Our rule learner was unable to distinguish between the most common correct

implementation and incorrect, because the patterns did not include empty list
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literals. Until this moment, the patterns were only relating two occurrences of

the same variable. As the base case in this exercise must contain the empty list,

there was no way for the algorithm to describe the base case. We extended our720

patterns set with patterns that relate the empty list with another variable from

the same clause.

5.1.3. Description of the final rules for the aunt exercise

The final model contained 10 n-rules and 7 p-rules. The final classification

accuracy (after ABML iterative loop) increased from initial 85.2% to 91.1%.725

The number of AST patterns in the final domain specification was 125.

The n-rule with the highest accuracy covers 17 incorrect programs and no

correct programs. The condition part of this rule contains only one AST pattern,

which connects the second argument from the head with the second variable

from the sister goal. Programs with such a pattern state that one’s sister is730

also one’s aunt, which is clearly wrong. An example of such a program is, where

the buggy pattern is underlined:

aunt(A, B) :-

parent(C, B),

sister(A, B).

The n-rules provide a mechanism to automatically extract typical student

errors. By examining all n-rules, a teacher learns about most common detours

and wrong attempts made by students, and can perhaps prevent such mistakes735

by including extracted information in future lectures. An alternative use of

n-rules would be to automatically annotate common programming bugs. For

example, an intelligent tutoring system could automatically highlight the above

pattern in a program that the student is currently debugging and help him or

her to spot the error faster.740

Let us examine the second most common n-rule. The AST pattern from

the condition part of this rule describes a person that is a mother and at the

same time has a sister. While a sister of the mother is indeed also an aunt, such

representation does not consider all aunts, because sisters of the father are also

aunts. An example of such a program:745
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aunt(A, B) :-

mother(C,B),

sister(A,C).

The most accurate p-rule for the aunt problem contains two AST patterns in the

condition part and covers 65 correct programs and 1 incorrect. The first AST

pattern connects the second argument from the head with the second argument

from the parent goal, namely aunt( , X) & parent( , X), which means that

in order to define aunt of X, the parent of X is relevant. The other AST pattern750

describes a situation where the second argument in sister contains the same

variable as the first in parent, meaning that the parent must have a sister. An

aunt is hence a sister of a parent:

aunt(A, B) :-

parent(C, B),

sister(A, C).

The interesting thing about p-rules is that the condition may not fully define

a correct program. There are many possible incorrect definitions of the aunt755

relation that are consistent with the above p-rule. For example, the rule does

not explicitly specify that aunt is also a sister to someone, however almost all

students who implemented the above two patterns got this part right. The

patterns in a p-rule therefore do not mention those parts of the program which

students almost always include, but those that distinguish correct programs760

from incorrect.

Since different p-rules cover different subsets of examples, we say that each

p-rule describes a different approach to solving a particular exercise. However,

some rules are sometimes very similar and one could argue that they hardly

represent different approaches. For example, the second most accurate p-rule is765

similar to the first rule, but with goals parent and sister in different order. A

human would regard this two approaches as the same, however to a computer,

given the definition of our patterns, where order matters, these approaches are

different. If the programs were canonicalized by having the goals sorted, only

one rule would be enough. On the other hand, another p-rule states that aunt is770
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a female that has a parent who is also the grandparent of her niece or nephew.

This is indeed an alternative approach defining the aunt relation.

5.2. Evaluation on 42 Prolog exercises

Table 1 contains results on 42 exercises, arranged in the same order as they

were presented to the students during the course. The values in the table are775

classification accuracies (CA) of models learned on learning set and tested on

testing set.

In the complete process of learning all 42 problems, we conducted 13 ABML

loops; in the remaining 29 domains the accuracy was already over 90%. We cu-

mulatively added 34 arguments to 34 critical examples. In the process, negative780

arguments were not needed and one positive argument per example was enough.

The arguments implied four major changes to the initial set of attributes and

applied four types of canonicalization. The changes to attributes were:

1. In the case of binary operators “=”, “==”, “\=”, and “\==”, the side of a

particular operand (left/right) is irrelevant. Therefore, the AST patterns785

containing this operation will always have one argument only.

2. Singleton variables occur only once in the program and therefore can not

be represented by patterns, where only two occurrences are considered.

We extended our AST pattern set to include all singleton patterns.

3. Sometimes variables are not enough to describe relations, but constants790

are also needed (e.g. empty list literal “[]” or integer constants). We

added all constant singletons and pairs of a literal and a variable to the

pattern set.

4. The cut operator (“!”) prevents Prolog from backtracking and therefore

enables some simplifications in the code, such as skipping goals. All pat-795

terns extracted from clauses after a cut are additionally flagged with the

word “cut”.

We implemented the following canonicalization:
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Problem basic norm atts both args
sister 0.98 0.98 0.98 0.99 0.99
aunt* 0.85 0.85 0.86 0.88 0.91
cousin* 0.87 0.87 0.87 0.88 0.88
ancestor 0.94 0.95 0.96 0.97 0.97
descendant 0.98 0.99 0.98 0.99 0.99
memb* 0.76 0.92 0.88 0.92 0.92
conc* 0.92 0.97 0.93 0.97 0.97
del 0.91 0.98 0.96 0.99 0.99
insert 0.85 0.96 0.88 0.97 0.97
permute 0.78 0.78 0.97 0.96 0.96
min* 0.81 0.77 0.82 0.89 0.89
max* 0.80 0.76 0.87 0.86 0.89
dup 0.75 0.75 0.95 0.96 0.96
rev 0.71 0.71 0.94 0.95 0.95
palindrome* 0.79 0.81 0.79 0.80 0.88
shiftleft 0.95 0.97 0.94 0.98 0.98
shiftright* 0.86 0.87 0.85 0.84 0.89
divide 0.73 0.73 0.97 0.98 0.98
evenlen* 0.62 0.64 0.82 0.85 0.89
sublist 0.90 0.90 0.91 0.92 0.92
sum 0.53 0.51 0.97 0.98 0.98
len 0.92 0.92 0.93 0.93 0.93
count 0.87 0.92 0.89 0.94 0.94
is-sorted 0.78 0.78 0.90 0.94 0.94
sins 0.86 0.88 0.90 0.92 0.92
isort 0.72 0.72 0.96 0.97 0.97
pivoting 0.70 0.83 0.88 0.93 0.93
quick-sort 0.84 0.90 0.88 0.93 0.93
union 0.78 0.86 0.79 0.90 0.90
intersect 0.69 0.68 0.68 0.92 0.92
diff* 0.54 0.61 0.64 0.86 0.86
is-superset 0.56 0.50 0.90 0.90 0.90
subset 0.86 0.94 0.86 0.94 0.94
powerset 0.96 0.96 0.95 0.95 0.95
memberBT* 0.86 0.88 0.85 0.93 0.91
mirrorBT* 0.72 0.72 0.72 0.72 0.72
deleteBT 0.86 0.81 0.87 0.93 0.93
numberBT 0.64 0.64 0.95 0.95 0.95
depthBT* 0.73 0.76 0.74 0.79 0.89
tolistBT 0.86 0.72 0.95 0.96 0.96
memberT 0.89 0.92 0.90 0.92 0.92
getdigits 0.74 0.79 0.74 0.94 0.94
Improvement 0.02 0.08 0.12 0.13

Table 1: Classification accuracies on 42 Prolog exercises. Asterisks denote exercises where we

run the ABML loop. Five columns show results of RL4T (rule learning for tutoring) using

different representations of data: basic (original attributes), norm (original attributes with

canonicalization), atts (new attributes without canonicalization), both (new attributes and

canonicalization), and args (both with arguments).
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1. Clauses with the semicolon operator (“;”), which implements the or re-

lation between goals, are replaced with several clauses without the or800

operator.

2. All binary unification operators (“=”) that have a variable on one side,

such as A = B or C = [], are removed from the clause. All other occur-

rences of this variable are then replaced by the value from the opposite

side. In our example, A gets replaced by B and C gets replaced by [],805

respectively.

3. Predicate names with the same functionality are unified. For example,

member(X, Y) and memb(X, Y) both evaluate whether X is a member of

Y.

4. Negation in Prolog can be expressed either with the “\+” operator or810

with the “not” operator. We replaced all occurrences of the latter with

the former.

The five numerical columns in Table 1 contain classification accuracies of

argument-based rule learner for tutoring (RL4T) with different preprocessing

of data. The first column shows the initial accuracies, where only the basic815

attributes were used and no canonicalization was applied. The second column

contains accuracies of RL4T on canonicalized data with the initial attributes.

The bottom value (the row “Improvement”) is the average difference between

a particular column and the original result in the first column. For example,

the canonicalization improved classification accuracy, on average, by 2%. In the820

third and the fourth column are the results on the data with enhanced attributes

without canonicalization (atts) and with canonicalization (both), respectively.

The new attributes improve the accuracy by 8%, but the new attributes and

canonicalization combined bears even higher accuracy gain, 12% on average.

The fifth column presents the results from learning using data and arguments,825

which additionally increased the accuracy for 1%.

It seems that the main benefit of arguments are the new attributes and re-

quired canonicalization, since the arguments improved accuracy only by 1%. It
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is, however, important to note that arguments were used only in 13 out of 42

domains. Furthermore, arguments in some cases will not improve accuracy, even830

though if these arguments have solved a critical example. If a critical exam-

ple is an outlier, solving it will not increase accuracy, because the likelihood of

finding a similar case among testing examples is very slim. On the other hand,

arguments are useful in domains that require several conditions in rules, which

often poses a problem for myopic rule learners employing greedy algorithms to835

learn rules. There are six exercises in Table 1 where arguments helped consid-

erably: in the aunt problem arguments improved accuracy by 3%, in max 3%,

palindrome 8%, shiftright 5%, evenlen 4%, and depthBT 10%. Often another

benefit from arguments is improved explanation.

These results confirm that it is possible to learn accurate rules, which rep-840

resent abstract descriptions of common key patterns that characterize students’

correct approaches and mistakes. Individually, each learned rule is quite accu-

rate, since in Section 4.3 we specified that each learned rule must have at least

90% classification accuracy. Moreover, these rules also achieve high accuracies

when they are used together as a general classifier, which indicates that they845

cover most of the submitted programs. Therefore, using these rules, we can

provide feedback for most submitted programs.

In 34 of 42 domains the final classification accuracy of RL4T on testing data

exceeded 90%. Of the remaining eight, in seven cases the accuracy was still

high and above 85%. The domains where we failed to get over 90% accuracy850

with ABML were: cousin (88 %), min (89%), max (89%), palindrome (88%),

shiftright (89%), evenlen (89%), mirrorBT (72%), and depthBT (89%). One of

the reasons why RL4T performed worse in these domains is a large number of

specific approaches to solving a problem. When there are several very specific

solutions, the AST patterns describing these solutions might be too rare to855

be represented as attributes. An example of such a solution was shown in

the previous section, where father relation was used to implement the aunt

relation.

We got the worst results in the mirrorBT exercise, where students have to
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flip a binary tree represented as b(LeftSubtree, Root, RightSubtree) over860

the vertical axis through the root node. A sample solution of this exercise is:

mirrorBT(nil, nil). % Empty tree

mirrorBT(b(A, B, C), b(D, B, E)) :-

mirrorBT(A, E), mirrorBT(C, D).

The problem is that AST patterns connect only two occurrences of a single

variable, which is not enough to sufficiently describe correct programs in the

mirrorBT case. Instead, the experiments show that if two occurrences of two

variables were represented as patterns, the accuracy would increase over 90%.865

However, since such patterns are more complicated, we decided not to include

them, as the general understandability of rules in other domains would decline.

Table 2 contains classification accuracies of some other general machine

learning algorithms. RL (rule learning) is the rule learning algorithm that

serves as the basic learner for RL4T, but without additional constraints defined870

in Section 4.2). Rules learned by RL are combined into a linear classifier with a

weighted sum, as suggested by Friedman & Popescu (2008). Other methods are

random forests (RF), logistic regression (LR) and majority classifier (MAJ), as

implemented in the Orange data mining library (Demšar et al., 2013). These

methods were tested with two versions of the same data set; in “orig” we used875

the original set of attributes, which were defined before we ran the ABML refine-

ment loop, whereas “both” represents the final data, namely canonicalized data

with all the attributes. As an alternative way to extract patterns we applied

the gSpan algorithm (Yan & Han, 2002), a general frequent subgraph mining

algorithm. With gSpan we generated all subgraphs that occurred in at least880

5 submissions, and used 10000 most common subgraphs as the attributes for

learning in random forests. The last column in Table 2 contains classification

accuracies of this approach.

According to the Friedman test, the differences between ranks are signifi-

ciant (p < 0.001). Figure 2 contains critical differences between ranks of dif-885

ferent methods (Demsar, 2006). Models learned on the final data (“both”) are

significantly more accurate than models learned on the data with the original
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Problem MAJ RL4T RL LR RF
full both+args basic both basic both basic both gSpan

sister 0.72 0.99 0.98 0.99 0.98 0.99 0.98 0.98 0.98
aunt 0.53 0.91 0.96 0.95 0.96 0.95 0.96 0.96 0.94
cousin 0.67 0.88 0.89 0.90 0.88 0.90 0.90 0.89 0.88
ancestor 0.64 0.97 0.95 0.99 0.95 0.98 0.98 0.99 0.98
descendant 0.55 0.99 0.98 0.98 0.98 0.98 0.99 0.99 0.98
memb 0.53 0.92 0.90 0.98 0.90 0.97 0.91 0.98 0.92
conc 0.77 0.97 0.95 0.97 0.95 0.96 0.97 0.99 0.93
del 0.64 0.99 0.97 0.98 0.97 0.98 0.96 0.99 0.94
insert 0.51 0.97 0.95 0.97 0.96 0.97 0.97 0.98 0.92
permute 0.75 0.96 0.92 0.96 0.92 0.96 0.94 0.98 0.94
min 0.72 0.89 0.89 0.94 0.89 0.93 0.87 0.94 0.90
max 0.37 0.89 0.85 0.92 0.85 0.91 0.86 0.95 0.79
dup 0.75 0.96 0.86 0.97 0.86 0.96 0.85 0.97 0.94
rev 0.71 0.95 0.90 0.96 0.89 0.96 0.89 0.95 0.95
palindrome 0.61 0.88 0.76 0.88 0.76 0.88 0.79 0.91 0.89
shiftleft 0.55 0.98 0.97 0.97 0.96 0.96 0.96 0.98 0.93
shiftright 0.49 0.89 0.91 0.94 0.90 0.94 0.90 0.95 0.89
divide 0.73 0.98 0.80 0.99 0.80 0.99 0.81 0.98 0.97
evenlen 0.62 0.89 0.82 0.93 0.82 0.92 0.80 0.95 0.90
sublist 0.71 0.92 0.91 0.95 0.90 0.94 0.96 0.96 0.92
sum 0.51 0.98 0.90 0.99 0.90 0.99 0.89 0.98 0.95
len 0.55 0.93 0.95 0.99 0.95 0.99 0.95 0.99 0.93
count 0.76 0.94 0.91 0.96 0.91 0.96 0.89 0.94 0.88
is-sorted 0.78 0.94 0.78 0.97 0.78 0.98 0.78 0.97 0.94
sins 0.81 0.92 0.90 0.95 0.90 0.95 0.90 0.95 0.93
isort 0.72 0.97 0.87 0.97 0.87 0.97 0.86 1.00 0.97
pivoting 0.69 0.93 0.90 0.97 0.90 0.97 0.90 0.97 0.91
quick-sort 0.63 0.93 0.92 0.97 0.88 0.95 0.91 0.98 0.92
union 0.78 0.90 0.83 0.95 0.83 0.94 0.83 0.94 0.83
intersect 0.67 0.92 0.81 0.96 0.81 0.96 0.76 0.96 0.82
diff 0.54 0.86 0.76 0.89 0.75 0.89 0.79 0.90 0.81
is-superset 0.44 0.90 0.82 0.89 0.82 0.86 0.83 0.90 0.92
subset 0.74 0.94 0.91 0.95 0.91 0.96 0.93 0.96 0.95
powerset 0.54 0.95 0.96 0.97 0.96 0.97 0.96 0.97 0.96
memberBT 0.55 0.91 0.93 0.96 0.93 0.96 0.95 0.97 0.91
mirrorBT 0.72 0.72 0.83 0.96 0.83 0.96 0.83 0.94 0.95
deleteBT 0.78 0.93 0.89 0.94 0.89 0.94 0.84 0.93 0.90
numberBT 0.64 0.95 0.86 0.99 0.86 1.00 0.85 0.99 0.95
depthBT 0.59 0.89 0.77 0.87 0.77 0.87 0.80 0.91 0.86
tolistBT 0.72 0.96 0.93 0.97 0.93 0.97 0.92 0.97 0.95
memberT 0.79 0.92 0.90 0.91 0.90 0.94 0.91 0.91 0.90
getdigits 0.68 0.94 0.80 0.95 0.80 0.95 0.80 0.98 0.90
Avg. rank 8.99 4.52 6.19 2.55 6.63 2.79 5.88 2.05 5.40

Table 2: A comparison of RL4T, rule learning (RL), and general machine learning methods:

random forests (RF), logistic regression (LR) and majority classifier (MAJ). RL, LR, and RF

were tested on the data with original attributes and on the data with both improvements

(new attributes and canonicalization). RF were also tested on data, were patterns were

automatically extracted with gSpan, a generic algorithm for frequent subgraph discovery.
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RF_both
RL_both
LR_both

RL4T
RF_gSpan

RF_orig
RL_orig
LR_orig
MAJ

CD

Figure 2: Critical differences of ranks in Table 2. We used Bonferroni-Dunn test at α = 0.05.

attributes. This result shows a general usefulness of ABML as a knowledge

elicitation tool, since the new attributes and canonicalization also help other

methods, and not just the method that was used in the loop.890

The accuracy of rules induced for tutoring (RL4T) is significantly lower than

the accuracy of the RL model, which is the rule learner used within RL4T. The

reasons are the constraints imposed on RL4T in Section 4.3. As explained, these

constraints are necessary to increase the interpretability of rules. RL, on the

other hand, does not need to conform to these requirements. As a consequence,895

for example, the problematic mirrorBT exercise becomes solvable when rule

conditions can specify the absence of patterns, as the accuracy of RL is 96%

instead of 72% achieved by RL4T.

Logistic regression (LR) performs the worst, although not significantly, among

standard machine learning algorithms RL, RF and LR. A linear combination900

of patterns therefore seems to be insufficient, and more complex combinations,

such as conjunctions of patterns, perform better. This result is expected, be-

cause each pattern represents a basic constraint in a Prolog program. To con-

struct a correct program, one needs to combine several of these patterns.

Random forest using the final AST patterns (RF both) performs significantly905

better than the random forest using patterns extracted with gSpan (RF gSpan).

The gSpan patterns, on the other hand, seem to be better than the patterns
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that were originally suggested by the teacher. However, we must emphasize

here that we implemented the most basic and model-independent procedure for

pattern selection and applying a more sophisticated procedure, such as iterative910

extraction of patterns (Bringmann et al., 2011), would likely result in more

accurate models. Nevertheless, even if the accuracy of automatically extracted

patterns was better, it would still be difficult to use such model in explanations,

as automatically extracted patterns tend to be less comprehensible to humans

than patterns that were defined by them.915

6. Conclusions

We have described a process for learning rules that characterize typical

approaches and errors in students’ programming solutions. We described an

argument-based rule learning algorithm that was tailored for this task, and an

extended version of the ABML loop for acquiring arguments from experts. The920

most important extensions are the algorithm for selecting critical examples and

the algorithm for selecting counter examples.

We evaluated the approach on our educational data of Prolog programs.

Each program was encoded with a set of patterns extracted from the abstract

syntax tree. In the first part of evaluation, we demonstrated the effectiveness of925

the ABML loop, which enabled the expert provide exactly the information that

was missing from the data. We have shown that arguments sometimes mention

existing attributes, but sometimes we had to implement several new attributes

(patterns) and canonicalizations of AST trees as a result. In the second part

of evaluation, we presented a 13% increase of classification accuracy of learned930

model averaged over all problems.

In addition to the algorithms, the case study illustrates three important

points in the context of programs data-mining. First, representing programs

with AST patterns seems a viable strategy, because we were able to achieve high

classification accuracies (over 90%) for a large majority of problems. Second,935

even though the space of possible AST patterns is large, we were able to select
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a relatively small subset of relevant patterns with the ABML loop. Third, since

AST patterns are interpretable, the learned rules are also interpretable. We can

therefore use them to characterize typical approaches and errors in programming

by humans.940

Probably the main weakness of ABML is that it requires a lot of time to

produce the final model. However, the source of this problem is not the com-

putational complexity of the algorithms, as one would initially assume, but the

time that experts need to express their arguments together with the time that

knowledge engineers need to implement their arguments. In the presented case945

study, the time spent by algorithms was negligible (a few seconds to find a

critical example) when compared to the time spent by the experts. The refine-

ment loop is designed to reduce the effort of experts as much as possible by

“smart” selection of critical examples. In this application, 34 critical examples

were examined. In most of the cases, the critical examples were processed rel-950

atively quickly (less than 1h for one critical example). However, when a more

complex operation was required, say implementing a new canonicalization pro-

cedure, then the process had to stop until the knowledge engineer implemented

the necessary changes. Both quicker alternatives, namely to ask the experts in

advance for all necessary patterns or automatic extraction of patterns, failed955

to provide satisfying result. Though some effort is still required, we therefore

regard ABML as an effective knowledge elicitation tool.

As mentioned in the introduction, learned rules can potentially be used in

various applications. We have implemented automatic hint generation based

on rules in the CodeQ3 tutor for teaching Prolog programming. Furthermore,960

the teachers were able to identify and understand several interesting patterns

of student programming, which can influence their teaching.

We have gathered similar data for Python in our CodeQ tutoring application.

We intend to apply the same procedure to learn patterns in Python programs.

However, since Python’s syntax is considerably less constrained than Prolog’s965

3https://codeq.si
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and Python programs are usually longer, we anticipate this learning problem to

be more complicated. We believe that the structure of AST patterns will stay

the same, but they will have to be more sophisticated. For example, we might

be required to store additional context information related to nesting of control

statements. Nevertheless, with the ABML loop we should be able to identify970

which information is required to learn accurate rules for Python.

In procedural languages, such as Python, we could further extend the set

of patterns with dynamic information. For example, we could record execution

traces of variables as presented in the Online Python Tutor (Guo, 2013) and then

extract patterns from these traces. Another option is to include patterns from975

linkage graphs Jin et al. (2012). Since both types of patterns are complementary

to static AST patterns, we think that this could improve the accuracy and

expressiveness of induced rules.

In this paper and in previous publications, ABML and the refinement loop

were presented as knowledge elicitation tools for rule-based classification models.980

How to apply ABML to other machine learning algorithms remains an open

question. Another open question is the selection of critical examples, which is

probably the most important step of the refinement loop. Would it be possible

to evaluate the usefulness of critical examples? Would presenting other critical

examples decrease or increase the number of interactions between ABML and985

an expert?

The problem of finding informative patterns for teaching programming is

closely related to software fault localization Wong et al. (2016), where one tries

to identify which parts of the programming code more likely contain a bug.

Due to the increasing complexity of software programs, this area is recently990

receiving more attention. The problem of finding a bug can be presented as a

machine learning problem, where the goal is to either uncover static or dynamic

(execution) patterns that suggest a bug. Since test cases are used as learning

instances and usually there are only a few available, human intervention is often

required to define patterns or new test cases. Given that they use similar data for995

learning (programming code), we believe that the data representation and the
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techniques presented in this paper could be useful for software fault localization.
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Možina, M., Polajnar, M., Toplak, M., Starič, A., Štajdohar, M., Umek, L.,
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Ribarič, S., Pirtošek, Z., & Bratko, I. (2013). Elicitation of neurological

knowledge with argument-based machine learning. Artificial intelligence in

medicine, 57 , 133–144.1045
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