
ABCN2e: an extension of the ABCN2 algorithm

Martin Možina

Faculty of Computer and Information Science, University of Ljubljana, Slovenia

Abstract

In this white paper, we present some recent extensions of the argument-based

rule learning algorithm ABCN2. The main differences are: a) ABCN2e learns

all rules in one pass and does not need consecutive calls to “FindBestRule”, b)

ABCN2e uses extreme-value correction (EVC) to evaluate rules, and c) learned

rules are combined into a classifier with a log-linear weighted sum.

Keywords: argument-based machine learning, rule learning, ABCN2

1. Argument-based machine learning

An argument is comprised of a series of premises that are intended to give

a reason for the conclusion. Humans mostly use arguments to justify or ex-

plain their beliefs and sometimes to convince others. In artificial intelligence,

argumentation is a branch that analyzes automatic reasoning from arguments5

- how arguments for and against a certain claim are produced and evaluated.

Argument-based machine learning (ABML) is a combination of argumentation

and machine learning. Arguments enhance learning examples and an ABML

method learns from such examples [9].

ABML uses arguments to elicit and represent background knowledge. While10

asking experts to provide general background knowledge can be a difficult task,

asking them to articulate their knowledge through arguments has proved to be

much more efficient, because in ABML experts need to argue about one specific

case and provide knowledge relevant for this case, which does not have to be

valid for the whole domain [4, 7].15

Preprint submitted to Expert Systems with Applications December 22, 2017



Arguments are used in ABML to enhance learning examples. Each argument

is attached to a single learning example, while one example can have several

arguments. There are two types of arguments: positive arguments are used to

explain (or argue) why a certain learning example is in the class as given, and

negative arguments are used to explain why it should not be in the class as20

given. Examples with attached arguments are called argumented examples.

An ABML method needs to induce a model that is consistent with given

arguments. That means that the model has to explain the examples using

the same terms that experts used during argumenting these examples. Thus,

arguments constrain the combinatorial search among possible hypotheses, and25

also direct the search towards hypotheses that are more comprehensible in the

light of expert’s background knowledge.

1.1. Argumented examples

A detailed description of argumented examples and the structure of argu-

ments is given in Mozina et al. [9]. The following description is a short summary.30

Let (X, y) denote a learning example, where X is a feature (or attribute)

vector and y is a class value. An argumented example is a triple (X, y,A), where

A is a set containing a) positive arguments explaining why is this example in

class y and b) negative arguments explaining why this example should not be

in class y. Each argument ai ∈ A is composed of a conjunction of reasons35

r1 ∧ r2 ∧ · · · ∧ rn. Allowed formats of reasons are:

• X = xi specifies that example has class value because (or despite) Xi

equals xi,

• X < xi (or X > xi) argues for (or against) class y because the value of X

is less than xi (or is larger),40

• X < (or X >) argues for (or against) class y because the value of X is

low (or high).

2



1.2. ABCN2e

In this section, we describe a new general argument-based rule learning

method that learns a set of classification rules from argumented examples.45

We first need to redefine the covering relation. In the standard definition

(see for example CN2 [2]) a rule covers an example if the condition part is true

for this example. A rule R AB-covers an argumented example (X, y,A) if:

• All conditions in R are true for X (same as in CN2),

• R is consistent with at least one positive argument of A.50

• R is not consistent with any of the negative arguments of A.

A rule is consistent with an argument if it contains the reasons of the argument

in its condition part.

The first argument-based rule learning algorithm was ABCN2 [9], which

extended the CN2 algorithm for learning unordered rules [1]. The CN2 learns55

rules using the separate-and-conquer principle: it starts by learning the best rule

it can find for the given data, then removes data covered by this rule and repeats

the procedure on the remaining data. The argument-based extension of CN2

started by learning rules that cover argumented examples and afterwards learned

remaining rules. Whereas this approach worked well in many cases, ABCN260

sometimes learned rules from argumented examples that prevented induction

of (more accurate) rules that would otherwise be learned. This unfortunate

behavior sometimes caused a decrease in accuracy of learned models.

The new argument-based rule learning algorithm (ABCN2e), introduced in

this paper, learns all rules for one class in one pass. While there are several65

existing rule-learning algorithms implementing such non-reductive strategy [5],

none of the techniques could be effectively applied in our case. ABCN2e is

an extension of the algorithm for single rule construction in CN2 [1], which

learns a rule in a top-down fashion using beam search strategy. Our algorithm

3



Function 2e(E, T ):

Input: A set of (argumented) examples E and a target class T .

Output: A set of classification rules R∗ explaining E.

1 Let P be the set of rules created from all positive arguments.

2 R ← P ∪ {if true then T}

3 ∀e ∈ E[T ];b[e]← ø // E[T ] are examples from T

4 while R 6= ∅ do

5 foreach r ∈ R do

6 ∀e ∈ E[T ];b[e]← r if ABcovers(r, e) ∧ Q(r) > Q(b[e]) ∧ Sig(r)

7 end

8 R ← R \ {r‖r ∈ R ∧ Stop(r)}

9 R ← FilterRules(R, E[T ])

10 R ← RefineRules(R)

11 end

12 R∗ ← {b[e]‖e ∈ E[T ]}

13 return R∗

Algorithm 1: The argument-based rule learning algorithm for learning a set

of classification rules for class T from argumented examples E.

is implemented as an add-on1 for the open data mining toolkit Orange [3].70

The pseudo code is presented in Algorithm 1. The algorithm starts by set-

ting the starR, which at any point of the algorithm contains the set of candidate

rules. Initially, R contains the default rule and all rules converted from argu-

ments, where reasons of positive arguments were simply used as conditions of

rules.75

The main difference between the ABCN2e and the CN2 algorithm is how

the best rule is stored. While in CN2 we only need to remember one best rule,

in ABCN2e we have to remember all relevant rules, since the complete rule set

is to be learned. We therefore keep the best rule for each learning example in

1The latest sources can be found at https://ailab.si/abml.

4

https://ailab.si/abml


Function FilterRules (R, E):
Input: Set R is the set of current rules, E are learning examples.

Output: Returns K most promising rules from R.

1 Let ∀e ∈ E; s[e] ⊂ R be a descending sorted list (according to

evaluation Q) of rules AB-covering e.

2 Let rank(r, e) be rank of rule r in s[e].

3 ∀r ∈ R; rank(r)← min(rank(r, e);∀e ∈ E)

4 ∀r ∈ R; freq(r)← #(rank(r, e) = rank(r);∀e ∈ E)

5 R ← Sort(R) //use the following sorting criteria:

// ∀ri, rj ∈ R, ri < rj ↔ (rank[ri] < rank[rj ])∨

// ∨ (rank[ri] = rank[rj ] ∧ freq[ri] > freq[rj ])

6 return R[1..K];

Algorithm 2: Function selects K best candidate rules from R for further

specialization. The method selects rules with high quality estimated with Q

and cover as many examples.

b. At the beginning (line 3), the list of best rules is empty.80

We defined a rule as relevant, if it is best for at least one learning example. A

rule is best for a particular example, if it AB-covers it and has the highest quality

(estimated with a user-defined heuristics Q) among all generated rules that also

AB-cover the same example. Lines 6-8 in Alg. 1 implement this behavior: best

rule for example b[e] is updated if a rule r is better than the current best rule85

and rule is accepted by function Sig. The Sig function validates whether a

rule is good enough to be present in the final set of rules, where statistical

significance is often used (hence the name Sig). By default, we use the EV-

corrected relative frequency measure [8] for Q and a simple function that always

returns true for Sig.90

The next step of the algorithm (line 8) removes all rules that are deemed

unpromising by the rule stopping criteria function Stop. The default implemen-

tation of this function removes rules with more than 5 conditions and removes

rules where the last condition did not remove any of the covered examples.

5



Line 9 of Alg. 1 removes rules from the beam if its size exceeds a certain95

threshold K. In all our experiments, K was arbitrarily set to 100; changing

this value did not significantly influence the results. The selection of K rules

in our algorithm differs from standard algorithms for single rule construction,

where it is common to simply take K rules with the highest value estimated by

a rule evaluation heuristic Q. In our case, we need to select a set of rules that100

a) have high quality and b) cover the complete space of learning examples. The

algorithm for selecting K most promising rules is given in Alg. 2. The algorithm

will order rules by their rank, where rank(r) is defined as the best rank of rule

r over all learning examples. For example, if a rule ri ∈ R has rank(ri) = 1,

that means that there exists a learning example that is AB-covered by this rule105

and no other rule AB-covering this example is better than ri. Similarly, if a rule

rj has rank rank(rj) = 3, there is an example where this rule is third best, and

there are no learning examples where rule rj is first or second.

In line 10 of Alg. 1, all candidate rules in star R get refined: all rules in R

are extended with all possible conditions (these were denoted selectors in the110

original CN2 paper) in the domain. The while loop continues until there are

candidate rules in R. At the end, the set of all relevant rules R∗ is constructed

from b and returned.

References

[1] Peter Clark and Robin Boswell. Rule induction with CN2: Some recent115

improvements. In Machine Learning - Proceeding of the Fifth Europen

Conference (EWSL-91), pages 151–163, Berlin, 1991.

[2] Peter Clark and Tim Niblett. The CN2 induction algorithm. Machine

Learning Journal, 4(3):261–283, 1989.

[3] Janez Demšar, Tomaž Curk, Aleš Erjavec, Črt Gorup, Tomaž Hočevar,120

Mitar Milutinovič, Martin Možina, Matija Polajnar, Marko Toplak, Anže

Starič, Miha Štajdohar, Lan Umek, Lan Žagar, Jure Žbontar, Marinka

6



Žitnik, and Blaž Zupan. Orange: Data mining toolbox in python. Journal

of Machine Learning Research, 14:2349–2353, 2013.

[4] Pedro Domingos. Toward knowledge-rich data mining. Journal of Data125

Mining and Knowledge Discovery, 15:21–28, 2007.

[5] Johannes Fürnkranz, Dragan Gamberger, and Nada Lavrač. Foundations

of Rule Learning. Springer-Verlag Berlin Heidenberg, 2012.

[6] Vida Groznik, Matej Guid, Aleksander Sadikov, Martin Možina, Dejan

Georgiev, Veronika Kragelj, Samo Ribarič, Zvezdan Pirtošek, and Ivan130

Bratko. Elicitation of neurological knowledge with argument-based machine

learning. Artificial intelligence in medicine, 57(2):133–144, 2013.

[7] Matej Guid, Martin Možina, Vida Groznik, Aleksander Sadikov, Dejan

Georgijev, Zvezdan Pirtošek, and Ivan Bratko. Abml knowledge refinement

loop: A case study. In Proceedings of the 2012 IEEE 20th International135

Symposium (ISMIS 2012), pages 41–50, 2012.

[8] Martin Možina, Janez Demšar, Jure Žabkar, and Ivan Bratko. Why is

rule learning optimistic and how to correct it. In Johannes Fuernkranz,

Tobias Scheffer, and Myra Spiliopoulou, editors, Proceedings of 17th Eu-

ropean Conference on Machine Learning (ECML 2006), pages 330–340,140

Berlin, 2006. Springer-Verlag.

[9] Martin Možina, Jure Žabkar, and Ivan Bratko. Argument-based machine

learning. Artificial Intelligence, 171(10/15):922–937, 2007.

[10] Martin Možina, Matej Guid, Jana Krivec, and Aleksander Sadikov. Learn-

ing to explain with abml. In Proceedings of the 5th International Workshop145

on Explanation-aware Computing (Exact 2010), pages 37–48, Lisbon, Por-

tugal, 2010.

7


	Argument-based machine learning
	Argumented examples
	ABCN2e


