
Automatic extraction of AST patterns
for debugging student programs

Timotej Lazar, Martin Možina, Ivan Bratko

University of Ljubljana, Faculty of Computer and Information Science, Slovenia

Abstract. When implementing a programming tutor it is often difficult
to manually consider all possible errors encountered by students. An al-
ternative is to automatically learn a bug library of erroneous patterns
from students’ programs. We propose abstract-syntax-tree (AST) pat-
terns as features for learning rules to distinguish between correct and
incorrect programs. We use these rules to debug student programs: rules
for incorrect programs (buggy rules) indicate mistakes, whereas rules for
correct programs group programs with the same solution strategy. To
generate hints, we first check buggy rules and point out incorrect pat-
terns. If no buggy rule matches, we use rules for correct programs to
recognize the student’s intent and suggest missing patterns. We evaluate
our approach on past student programming data for a number of Prolog
problems. For 31 out of 44 problems, the induced rules correctly classify
over 85% of programs based only on their structural features. For ap-
proximately 73% of incorrect submissions, we are able to generate hints
that were implemented by the student in some subsequent submission.

Keywords: Programming tutors · Error diagnosis · Hint generation ·
Abstract syntax tree · Syntactic features

1 Introduction

Programming education is becoming increasingly accessible with massive online
courses. Since thousands of students can attend such courses, it is impossible for
teachers to individually evaluate each participant’s work. On the other hand, in-
time feedback directly addressing students’ mistakes can aid the learning process.
Providing feedback automatically could thus greatly enhance these courses.

Traditional programming tutors use manually constructed domain models to
generate feedback. Model-tracing tutors simulate the problem-solving process:
how students program. This is challenging because there are no well-defined steps
when writing a program. Many tutors instead only analyze individual programs
submitted by students, and disregard how a program evolved. They often use
models coded in terms of constraints or bug libraries [10].

Developing a domain model typically requires significant knowledge-engineer-
ing effort [4]. This is particularly true for programming tutors, where most prob-
lems have several alternative solutions with many possible implementations [11].
Data-driven tutors reduce the necessary authoring effort by mining educational

data – often from online courses – to learn common errors and generate feed-
back [17,16,8].

In this paper we address the problem of finding useful features to support
data mining in programming tutors. To support hint generation, these features
must be robust against irrelevant code variations (such as renaming a variable)
and relatable to knowledge components of the target skill (programming).

We describe features with abstract-syntax-tree patterns that encode relations
between nodes in a program’s abstract syntax tree. We use patterns that describe
a path between pairs of leaf nodes referring to variables or values. By omitting
some nodes on these paths, patterns can match different programs containing the
same relation. We then induce rules to predict program correctness from AST
patterns, allowing us to generate hints based on missing or incorrect patterns.

We evaluated our approach on existing Prolog programs submitted by stu-
dents during past lab sessions of a second-year university course. For 73% of
incorrect submissions we are able to suggest potentially useful patterns – those
that the students had actually implemented in the final, correct programs.

The main contributions presented in this paper are: AST patterns as features
for machine learning, a rule-based model for predicting program correctness, and
hint generation from incorrect or missing patterns in student programs.

2 Background

Several programming tutors generate hints from differences between the stu-
dent’s program and a predefined set of possible solutions. The possible solution
strategies for each problem can be given as a set of programs, or specified in
a domain-specific language. Both Johnson’s Pascal tutor [9] and Hong’s Prolog
tutor [7] perform hierarchical goal decomposition based on predefined program-
ming plans or techniques to determine the student’s intent. Gerdes et al. use
a small set of annotated model programs to derive solution strategies, which
function in a similar way [5].

Rivers and Koedinger compare students’ programs directly to a database
of previous correct submissions [17]. They reduce program variability using
equivalence-preserving transformations, such as inlining functions and reorder-
ing binary expressions. Hints are generated by suggesting a minimal correct step
leading from the current submission to the closest correct program.

Another option is to compare program behavior. Nguyen et al. classify pro-
gramming mistakes according to results on a preselected set of test inputs [16].
Li et al. generate test cases to distinguish between programs by selecting inputs
that exercise different code paths in the program [14]. Such tutors can point out
pertinent failing test cases, which can be very helpful.

Constraints [15] encode domain principles using if-then rules with relevance
and satisfaction conditions, e.g. “if a function has a non-void return type, then
it must have a return statement” [6]. If a program violates a constraint, the
tutor displays a predefined message. Le’s Prolog tutor improves constraint-based
diagnosis by assigning weights to different types of constraints [12].

Jin et al. use linkage graphs to describe data dependencies between the pro-
gram’s statements [8]; we use AST patterns in a similar way. Nguyen et al.
analyzed submissions in a large machine-learning course to learn a vocabulary
of code phrases: subtrees of submissions’ abstract syntax trees that perform the
same function in a given context [16]. By swapping parts between different pro-
grams, they built up a search library of functionally equivalent AST subtrees
within a given context.

The idea for AST patterns comes from Tregex – tree regular expressions,
mainly used in the field of natural-language processing [13]. Tregex patterns
can encode complex relations between nodes, but can become unwieldy; in this
paper we use a simpler s-expression syntax. Another language for describing tree
patterns using s-expressions is trx, which additionally supports choice, repetition
and other operators [1].

3 AST patterns

In this section we describe AST patterns through examples, while Sect. 4.1 ex-
plains how patterns are extracted from student programs. Consider the following
Prolog program implementing the relation sister(X,Y)1:

sister(X,Y):- % X is Y’s sister when:

parent(P,X),

parent(P,Y), % X and Y share a common parent P,

female(X), % X is female, and

X \= Y. % X and Y are not the same person.

Figure 1 shows the program’s AST with two patterns. The pattern drawn
with blue dotted arrows encodes the fact that the first argument to the sister

predicate also appears as the first argument in the call to female. In other words,
this pattern states that X must be female to be a sister. We write this pattern
as the s-expression

(clause (head (compound (functor ‘sister’) (args var)))
(compound (functor ‘female’) (args var)))

Every pattern used in this paper has the same basic structure, and describes
paths from a clause node to one or two leaf nodes containing variables or values.
All patterns in Figs. 1 and 2 are induced from such pairs of nodes. For each
leaf we also include some local context, such as the name of the predicate (e.g.
parent) and the operators used in unop and binop nodes.

We regard these patterns as the smallest units of meaning in Prolog programs:
each pattern encodes some interaction between two objects (variable or value)
in the program. Including more than two leaf nodes in a pattern could make it
difficult to pinpoint the exact error when generating hints. Each pattern contains

1 Binary relations like this one should be read as “X is a sister/parent/. . . of Y”.

text

clause

head

compound

functor

sister

args

var

X

args

var

Y

and

compound

functor

parent

args

var

P

args

var

X

and

compound

functor

parent

args

var

P

args

var

Y

and

compound

functor

female

args

var

X

binop

var

X

\= var

Y

Fig. 1. The AST for the sister program, showing two patterns and the leaf nodes
inducing them. Solid red arrows equate the first arguments in the two calls to parent.
Dotted blue arrows encode the necessary condition that X must be female to be a sister.

at most two var nodes, so we require they both refer to the same variable –
relating two nodes with different variables would not tell us much about the
program. We can thus omit actual variable names from patterns.

We handle syntactic variations in programs by omitting certain nodes from
patterns. For example, by not including and nodes, the above pattern can match
a clause regardless of the presence (or order) of other goals in its body (i.e., with
any arrangement of and nodes in the AST). Order is important for the nodes
specified in the pattern; this is explained below.

The second pattern in Fig. 1, drawn with solid red arrows, encodes the fact
that the two calls to parent share the first argument. In other words, X and Y

must have the same parent P.

(clause (compound (functor ‘parent’) (args var))
(compound (functor ‘parent’) (args var)))

Patterns describe relations between nodes in a program’s AST. Specifically,
the pattern (a b c) means that the nodes b and c are descended from a, and
that b precedes c in a depth-first tree walk. In general, an AST matches the
pattern (name p1 . . . pk) if it contains a node n labeled name; the subtree rooted
at n must also contain, in depth-first order, distinct nodes n1 to nk matching
subpatterns p1 to pk. The above pattern, for example, matches only the last of
the following programs (the first program is missing one call to parent, and the
second has different variables in positions encoded by the pattern):

% nonmatching % nonmatching % matching

sister(X,Y):- sister(X,Y):- sister(X,Y):-

female(X), female(X), parent(A,X),

parent(P,X), parent(A,X), female(X),

X \= Y. parent(B,Y), parent(A,Y),

X \= Y. X \= Y.

A relation between any two objects in a program is insufficient to reason
about the program’s behavior on the whole. In the tutoring context, however,
there are patterns that strongly indicate the presence of certain bugs. Take for
example the following incorrect program to sum a list:

sum([],0). % base case: the empty list sums to zero

sum([H|T],Sum):- % recursive case:

sum(T,Sum), % sum the tail and

Sum is Sum + H. % add first element (bug: reused variable)

This error is fairly common with Prolog novices: the variable Sum is used
to represent both the sum of the whole list (line 2), and the sum of only the
tail elements (line 3). The last line fails since Prolog cannot unify Sum with a
(generally) different value of Sum + H. The program’s AST is displayed in Fig. 2.

text

clause

head

compound

functor

sum

args

[] args

0

clause

head

compound

functor

sum

args

list

var

H

var

T

args

var

Sum

and

compound

functor

sum

args

var

T

args

var

Sum

binop

var

Sum

is binop

var

Sum

+ var

H

Fig. 2. The AST for the buggy sum program. Dotted arrows relate the correct values in
the base case. Solid and dashed arrows denote two patterns describing incorrect reuse
of the Sum variable in the recursive case.

Various patterns capture this mistake. Solid red arrows in Fig. 2 show one
example – Sum returned by the predicate should not be the same as the Sum from
the recursive call:

(clause (head (compound (functor ‘sum’) (args (args var))))
(compound (functor ‘sum’) (args (args var))))

The second pattern, drawn with dashed orange arrows in the figure, indicates
the likely error in the arithmetic expression:

(clause (binop var ‘is’ (binop var ‘+’)))

The leftmost pattern in Fig. 2, drawn with dotted blue arrows, describes the
correct relation between the two constants in the base-case rule:

(clause (head (compound (functor ‘sum’) (args [] (args 0)))))

We include such patterns in our feature set to cover the base-case clauses in
recursive programs, which often include no variables.

4 Method

This section explains the three steps in our approach: discovering AST patterns,
learning classification rules for correct and incorrect programs, and using those
rules to generate hints.

4.1 Extracting patterns

We extract patterns from student submissions. As described above, we are only
interested in patterns connecting pairs of leaf nodes in an AST: either two nodes
referring to the same variable (like the examples in Fig. 1), or a value (such as
the empty list [] or the number 0) and another variable/value occurring within
the same compound or binop (like the blue dotted pattern in Fig. 2).

We induce patterns from such node pairs. Given the clause (the second oc-
currence of each variable – A, B and C – is marked with ’ for disambiguation)

a(A, B):-

b(A’, C),

B’ is C’ + 1.

we select the following pairs of nodes: {A, A’}, {B, B’}, {C, C’}, {B’, 1} and {C’, 1}.
For each selected pair of leaf nodes (a, b) we construct a pattern by walking

the AST in depth-first order and recording nodes that lie on the paths to a
and b. We omit and nodes, as explained in the previous section. We also include
certain nodes that lie near the paths to selected leaves. Specifically, we include
the functor/operator of all compound, binop and unop nodes containing a or b.

Patterns are extracted automatically given above constraints (each pattern
connecting a pair of variables or values). We find that such patterns work well for
Prolog. Other languages, however, will likely require different kinds of patterns
to achieve good performance.

In order to avoid inducing rules specific to a particular program (covering
typos and other idiosyncratic mistakes), we ignore rare patterns. In this study
we used patterns that occurred in at least five submissions. These patterns form
the feature space for rule learning.

4.2 Learning rules

We represent students’ programs in the feature space of AST patterns described
above. Each pattern corresponds to one binary feature with value true when the
pattern is present and false when it is absent. We classify each program as correct
if it passes a predefined set of test cases, and incorrect otherwise. We use these
labels for machine learning.

Since we can already establish program correctness using appropriate tests
cases, our goal here is not classifying new submissions. Instead, we wish to dis-
cover patterns associated with correct and incorrect programs. This approach
to machine learning is called descriptive induction – the automatic discovery
of patterns describing regularities in data. We use rule learning for this task,
because rule conditions can be easily translated to hints.

Before explaining the algorithm, let us discuss the reasons why a program
can be incorrect. Our experience indicates that bugs in student programs can
often be described by 1) some incorrect or buggy pattern, which needs to be
removed, or 2) some missing relation (pattern) between objects that should be
included before the program can be correct. We shall now explain how both
types of errors can be identified with rules.

To discover buggy patterns, the algorithm first learns negative rules that
describe incorrect programs. We use a variant of the CN2 algorithm [2] imple-
mented within the Orange data-mining toolbox [3]. Since we use rules to generate
hints, and since hints should not be presented to students unless they are likely
to be correct, we impose additional constraints on the rule learner:

– classification accuracy of each learned rule must exceed a threshold (we se-
lected 90%, as 10% error seems acceptable for our application);

– each conjunct in a condition must be significant according to the likelihood-
ratio test (in our experiments we set significance threshold to p = 0.05);

– a conjunct can only specify the presence of a pattern (in other words, we
only allow feature-value pairs with the value true).

The first two constraints ensure good rules with only significant patterns,
while the last constraint ensures rules only mention the presence (and not ab-
sence) of patterns as reasons for a program to be incorrect. This is important,
since conditions in negative rules should contain patterns symptomatic of incor-
rect programs.

With respect to the second type of error, we could try the same approach and
use the above algorithm to learn positive rules for the class of correct programs.
The conditional part of positive rules should define sufficient combinations of
patterns that render a program correct. It turns out that it is difficult to learn
accurate positive rules, because there are many programs that are incorrect de-
spite having all important patterns, because they also include incorrect patterns.

A possible way to solve this problem is to remove programs that are covered
by some negative rule. This way all known buggy patterns are removed from
the data, and will not be included in positive rules. However, removing incorrect
patterns also removes the need for specifying relevant patterns in positive rules.

For example, if all incorrect programs were removed, the single rule “true ⇒
correct” would suffice, which cannot be used to generate hints. We achieved the
best results by learning positive rules from the complete data set, but estimating
their accuracy only on programs not covered by some negative rule.

While our main interest is discovering important patterns, induced rules can
still be used to classify new programs, for example to evaluate rule quality.
Classification proceeds in three steps: 1) if a negative rule covers the program,
classify it as incorrect; 2) else if a positive rule covers the program, classify it as
correct; 3) otherwise, if no rule covers the program, classify it as incorrect.

We note that Prolog clauses can often be written in various ways. For exam-
ple, the clause “sum([],0).” can also be written as

sum(List,Sum):- List = [], Sum = 0.

Our method covers such variations by including additional patterns and rules.
Another option would be to use rules in conjunction with program canonicaliza-
tion, by transforming each submission into a semantically equivalent normalized
form before extracting patterns [17].

4.3 Generating hints

Once we have induced the rules for a given problem, we can use them to provide
hints based on buggy or missing patterns. To generate a hint for an incorrect
program, each rule is considered in turn. We consider two types of feedback:
buggy hints based on negative rules, and intent hints based on positive rules.

First, all negative rules are checked to find any known incorrect patterns in
the program. To find the most likely incorrect patterns, the rules are considered
in the order of decreasing quality. If all patterns in the rule “p1 ∧ · · · ∧ pk ⇒
incorrect” match, we highlight the corresponding leaf nodes. As a side note, we
found that most negative rules are based on the presence of a single pattern. For
the incorrect sum program from the previous section, our method produces the
following highlight

sum([],0). % base case: the empty list sums to zero

sum([H|T],Sum):- % recursive case:

sum(T,Sum), % sum the tail and

Sum is Sum + H. % add first element (bug: reused variable)

based on the rule “p⇒ incorrect”, where p is the solid red pattern in Fig. 2. This
rule covers 36 incorrect programs, and one correct program using an unusual
solution strategy.

If no negative rule matches the program, we use positive rules to determine
the student’s intent. positive rules group patterns that together indicate a high
likelihood that the program is correct. Each positive rule thus defines a particular
“solution strategy” in terms of AST patterns. We reason that alerting the student
to a missing pattern could help them complete the program without revealing
the whole solution.

Table 1. Results on five selected domains and averaged results over 44 domains.
Columns 2, 3, and 4 contain classification accuracies of our rule learning method, ma-
jority classifier, and random forest, respectively. Columns 5 and 6 report the number
of all generated buggy hints and the number of hints that were actually implemented
by students. The following three columns contain the number of all generated intent
hints (All), the number of implemented hints (Imp) and the number of implemented
alternative hints (Alt). The numbers in the last column are student submission where
hints could not be generated. The bottom two rows give aggregated results (total and
average) over all 44 domains.

Problem CA Buggy hints Intent hints No hint

Rules Maj RF All Imp All Imp Alt

sister 0.988 0.719 0.983 128 128 127 84 26 34
del 0.948 0.645 0.974 136 136 39 25 10 15
sum 0.945 0.511 0.956 59 53 24 22 1 6
is sorted 0.765 0.765 0.831 119 119 0 0 0 93
union 0.785 0.783 0.813 106 106 182 66 7 6
...

Total 3613 3508 2057 1160 244 1045

Average 0.857 0.663 0.908 79.73 77.34 46.75 26.36 5.55 23.75

When generating a hint from positive rules, we consider all partially matching
rules “p1 ∧ · · · ∧ pk ⇒ correct”, where the student’s program matches some
(but not all) patterns pi. For each such rule we store the number of matching
patterns, and the set of missing patterns. We then return the most common
missing pattern among the rules with most matching patterns.

For example, if we find the following missing pattern for an incorrect program
implementing the sister predicate:

(clause (head (compound (functor ‘sister’) (args var))) (binop var ‘\=’)),

we could display a message to the student saying “comparison between X and
some other value is missing”, or “your program is missing the goal X \= ?”.

This method can find several missing patterns for a given partial program.
In such cases we return the most commonly occurring pattern as the main hint,
and other candidate patterns as alternative hints. We use main and alternative
intent hints to establish the upper and lower bounds when evaluating hints.

5 Evaluation

We evaluated our approach on 44 programming assignments. We preselected 70%
of students whose submissions were used as learning data for rule learning. The
submissions from the remaining 30% of students were used as testing data to
evaluate classification accuracy of learned rules, and to retrospectively evaluate
quality of given hints. Problems analyzed in this paper constitute a complete
introductory course in Prolog, covering the basics of the language.

Table 1 contains results on five selected problems (each representing a group
of problems from one lab session), and averaged results over all 44 problems.2

The second, third, and fourth columns provide classification accuracies (CA)
of the rule-based, majority, and random-forest classifiers on testing data. The
majority classifier and the random forests method, which had the best overall
performance, serve as references for bad and good CA on particular data sets.

For example, our rules correctly classified 99% of testing instances for the
sister problem, the accuracy of the majority classifier was 66%, and random
forests achieved 98%. CA of rules is also high for problems del and sum. It
is lower, however, for is sorted and union, suggesting that the proposed AST
patterns are insufficient for certain problems. Indeed, after analyzing the problem
is sorted, we observed that our patterns do not cover predicates with a single
empty-list ([]) argument, which occurs as the base case in this problem. For this
reason, the rule learning algorithm failed to learn any positive rules and therefore
all programs were classified as incorrect. In the case of union, many solutions use
the cut (!) operator, which is also ignored by our pattern generation algorithm.

We evaluated the quality of hints on incorrect submissions from those student
traces that resulted in a correct program. In the case of the sister data set,
there were 289 such incorrect submission out of 403 submissions in total.

The columns captioned “Buggy hints” in Table 1 contain evaluation of buggy
hints generated from negative rules. For each generated buggy hint we checked
whether it was implemented by the student in the final submission. The column
“All” is the number of all generated buggy hints, while the column “Imp” is
the number of implemented hints. The results show high relevance of generated
buggy hints, as 97% (3508 out of 3613) of them were implemented in the final
solution; in other words, the buggy pattern was removed.

The intent hints are generated when the algorithm fails to find any buggy
hints. The column “All” contains the number of generated intent hints, “Imp”
the number of implemented main intent hints, and “Alt” is the number of im-
plemented alternative hints. Notice that the percentage of implemented intent
hints is significantly lower when compared to buggy hints: in the case of prob-
lem sister 84 out of 127 (66%) hints were implemented, whereas in the case of
problem union only 66 out of 182 (36%) hints were implemented. On average,
56% of main intent hints were implemented.

The last column shows the number of submissions where no hints could
be generated. This value is relatively high for the is sorted problem, because
the algorithm could not learn any positive rules and thus no intent hints were
generated.

To sum up, buggy hints seem to be good and reliable, since they are always
implemented when presented, even when we tested them on past data – the
decisions of students were not influenced by these hints. The percentage of im-
plemented intent hints is, on average, lower (56%), which is still not a bad result,
providing that it is difficult to determine the programmer’s intent. In 12% (244

2 We report only a subset of results due to space restrictions. Full results and source
code can be found at https://ailab.si/aied2017.

https://ailab.si/aied2017

out of 2057) of generated intent hints, students implemented an alternative hint
that was identified by our algorithm. Overall we were able to generate hints for
84.5% of incorrect submissions. Of those hints, 86% were implemented (73% of
all incorrect submissions).

High classification accuracies for many problems imply that it is possible to
determine program correctness simply by checking for the presence of a small
number of patterns. Our hypothesis is that for each program certain crucial
patterns exist that students have difficulties with. When they figure out these
patterns, implementing the rest of the program is usually straightforward.

6 Conclusion

We have used AST patterns as features to describe program structure. By en-
coding only relations between particular nodes, each pattern can match many
programs. AST patterns thus function as a sort of “regular expressions” for trees.

We presented a method for automatically extracting AST patterns from stu-
dent programs. Our patterns encode relations between data objects in a program,
with each pattern connecting either two instances of the same variable, a variable
and a value, or two values. We consider such patterns as the atomic syntactic
relations in a program, and use them as machine-learning features.

We explained how to induce rules for classifying correct and incorrect pro-
grams based on AST patterns. Since the goal of our research is to generate hints,
we adapted the CN2 algorithm to produce rules useful for that purpose. We in-
duce rules in two passes: we first learn the rules for incorrect programs, and
then use programs not covered by any such rule to learn the rules for correct
programs.

Evaluation shows that our patterns are useful for classifying Prolog programs.
Other programming languages will likely require different patterns. For example,
in commonly taught imperative languages such as Python or Java, each variable
can take on different values and appear in many places. Further research is
needed to determine the kinds of patterns useful in such situations.

We showed how to generate hints based on rules by highlighting buggy pat-
terns or pointing out what patterns are missing. Evaluation on past student data
shows that useful hints can be provided for many incorrect submissions this way.
The quality of feedback could be improved by annotating rules with explanations
in natural language. Since patterns and rules are easily interpretable, they can
also help when manually authoring tutoring systems, by indicating the common
errors and the typical solution strategies for each problem.

In the future we will attempt to improve rule accuracy for certain problems,
such as union. This will likely necessitate new kinds of patterns, for example
to handle the cut operator. Adapting our methods to handle Python programs
will give us some insight into what kinds of patterns could be useful in different
situations. Finally, we will implement hint generation in an online programming
tutor CodeQ, and evaluate the effect of automatic feedback on students’ problem-
solving.

References

1. Bagrak, I., Shivers, O.: trx: Regular-tree expressions, now in scheme. In: Proc.
Fifth Workshop on Scheme and Functional Programming. pp. 21–32 (2004)

2. Clark, P., Boswell, R.: Rule induction with CN2: Some recent improvements. In:
Proc. Fifth European Conference on Machine Learning. pp. 151–163 (1991)

3. Demšar, J., Curk, T., Erjavec, A., Črt Gorup, Hočevar, T., Milutinovič, M.,
Možina, M., Polajnar, M., Toplak, M., Starič, A., Štajdohar, M., Umek, L.,
Žagar, L., Žbontar, J., Žitnik, M., Zupan, B.: Orange: Data mining toolbox
in Python. Journal of Machine Learning Research 14, 2349–2353 (2013), http:

//jmlr.org/papers/v14/demsar13a.html
4. Folsom-Kovarik, J.T., Schatz, S., Nicholson, D.: Plan ahead: Pricing ITS learner

models. In: Proc. 19th Behavior Representation in Modeling & Simulation Confer-
ence. pp. 47–54 (2010)

5. Gerdes, A., Heeren, B., Jeuring, J., van Binsbergen, L.T.: Ask-elle: an adaptable
programming tutor for haskell giving automated feedback. International Journal
of Artificial Intelligence in Education pp. 1–36 (2016)

6. Holland, J., Mitrovic, A., Martin, B.: J-LATTE: a constraint-based tutor for Java.
In: Proc. 17th Int’l Conf. Computers in Education (ICCE 2009). pp. 142–146 (2009)

7. Hong, J.: Guided programming and automated error analysis in an intelligent
Prolog tutor. International Journal of Human-Computer Studies 61(4), 505–534
(2004)

8. Jin, W., Barnes, T., Stamper, J., Eagle, M.J., Johnson, M.W., Lehmann, L.: Pro-
gram representation for automatic hint generation for a data-driven novice pro-
gramming tutor. In: Proc. 11th Int’l Conf. Intelligent Tutoring Systems. pp. 304–
309 (2012)

9. Johnson, W.L.: Understanding and debugging novice programs. Artificial Intelli-
gence 42(1), 51–97 (1990)

10. Keuning, H., Jeuring, J., Heeren, B.: Towards a systematic review of automated
feedback generation for programming exercises. In: Proc. 2016 ACM Conf. on In-
novation and Technology in Computer Science Education. pp. 41–46. ACM (2016)

11. Le, N.T., Loll, F., Pinkwart, N.: Operationalizing the continuum between well-
defined and ill-defined problems for educational technology. IEEE Transactions on
Learning Technologies 6(3), 258–270 (2013)

12. Le, N.T., Menzel, W.: Using weighted constraints to diagnose errors in logic pro-
gramming – the case of an ill-defined domain. International Journal of Artificial
Intelligence in Education 19(4), 381–400 (2009)

13. Levy, R., Andrew, G.: Tregex and tsurgeon: tools for querying and manipulating
tree data structures. In: 5th Int’l Conf. Language Resources and Evaluation (2006)

14. Li, S., Xiao, X., Bassett, B., Xie, T., Tillmann, N.: Measuring code behavioral
similarity for programming and software engineering education. In: Proc. 38th
Int’l Conf. on Software Engineering Companion. pp. 501–510. ACM (2016)

15. Mitrovic, A.: Fifteen years of constraint-based tutors: what we have achieved and
where we are going. User Modeling and User-Adapted Interaction 22(1-2), 39–72
(2012)

16. Nguyen, A., Piech, C., Huang, J., Guibas, L.: Codewebs: scalable homework search
for massive open online programming courses. In: Proc. 23rd Int’l Conf. World
Wide Web. pp. 491–502 (2014)

17. Rivers, K., Koedinger, K.R.: Data-driven hint generation in vast solution spaces:
a self-improving Python programming tutor. International Journal of Artificial
Intelligence in Education pp. 1–28 (2015)

http://jmlr.org/papers/v14/demsar13a.html
http://jmlr.org/papers/v14/demsar13a.html

	Automatic extraction of AST patterns for debugging student programs

