
Syntax-based analysis of programming concepts
in Python

Martin Možina, Timotej Lazar

University of Ljubljana, Faculty of Computer and Information Science, Slovenia

Abstract. Writing programs is essential to learning programming. Most
programming courses encourage students to practice with lab and home-
work assignments. By analyzing solutions to these exercises teachers can
discover mistakes and concepts students are struggling with, and use that
knowledge to improve the content and presentation of the course. Stu-
dents however tend to submit many different programs even for simple
exercises, making such analysis difficult. We propose using tree regular
expressions to encode common patterns in programs. Based on these
patterns we induce rules describing common approaches and mistakes
for a given assignment. In this paper we describe the rule-learning algo-
rithm and present two case studies of rule-based analysis for introductory
Python problems. We show that our rules are easy to interpret, and can
be learned from a relatively small set of programs.

Keywords: Learning programming · Educational data analysis · Error
diagnosis · Abstract syntax tree · Tree regular expressions

1 Introduction

Providing feedback to students is among the most time-consuming tasks when
teaching programming. In large courses with hundreds of students, feedback
is therefore often limited to automated program testing. While test cases can
reliably determine whether a program is correct or not, they cannot easily be
associated with specific errors in the code.

Prompt, specific feedback could however greatly benefit learning. Further-
more, analyzing the problems students have with programming exercises can
allow teachers to improve the course. The main obstacle to such analysis is the
large variability of student submissions: even for the simplest tasks, students can
submit tens of thousands of different programs [5,11].

Several attempts have been made to automatically discover commonalities
in a set of programs [6,12,9,4]. This would allow a teacher to annotate a rep-
resentative subset of submissions with feedback messages, which could then be
automatically propagated to similar programs. These techniques are used for
instance by the OverCode tool to visualize variations in student programs [3].

This paper presents a new language for describing patterns in student code.
Our approach is based on tree regular expressions (TREs) used in natural lan-
guage processing [8]. TREs are similar to ordinary regular expressions: they allow

us to specify important patterns in a program’s abstract syntax tree (AST) while
disregarding irrelevant parts. We found that TREs are sufficiently expressive to
represent various concepts and errors in novice programs.

We have previously demonstrated this approach with Prolog programs [7].
Here we refine the definition of AST patterns, and show that they can be applied
to Python – representing a different programming paradigm – with only a few
language-specific modifications. We also demonstrate that rules learned from
such patterns can be easily interpreted.

In CodeWebs, Nguyen et al. look for functionally equivalent AST subtrees
that perform the same transformation from inputs to outputs [9]. Piech et al.
learn program embeddings to a similar end [10]. Our work differs from theirs
mainly in that TREs allow us to describe relations in (potentially disjoint) sub-
parts of the program. We induce rules based on binary correct/incorrect labels,
and do not have to execute any submission more than once.

Jin et al. use linkage graphs to represent dependencies between individual
program statements based on the variables they contain [6]. This allows them
to form equivalence classes of programs by ignoring unrelated statements. While
TREs can encode such attributes, we use smaller patterns that encode depen-
dencies between pairs of variables. Hovemeyer et al. focus on control structures
such as loops and conditionals [4]. Our AST patterns include TREs that describe
control flow, expressing the same features.

When comparing programs we must account for superficial differences such
as different naming schemes. Rivers et al. canonicalize student programs using
equivalency-preserving transformations (renaming variables, reordering binary
expressions, inlining functions and so on) [12]. We use their canonicalization as
a preprocessing step before extracting patterns.

The next section describes TREs and AST patterns, and gives a brief eval-
uation to show that patterns can discriminate between correct and incorrect
programs. Section 3 describes our modified version of the CN2 rule-learning al-
gorithm, and analyzes student solutions to two programming exercises in terms
of such rules. The last section outlines the directions for our future work.

2 AST patterns

We encode structural patterns in ASTs using tree regular expressions (TREs).
An ordinary regular expression describes the set of strings matching certain
constraints; similarly, a TRE describes the set of trees containing certain nodes
and relations. Since TREs describe structure, they are themselves represented
as trees. More specifically, both ASTs and TREs are ordered rooted trees.

In this work we used TREs to encode (only) child and sibling relations in
ASTs. We write them as S-expressions, such as (a (b ˆ d . e $) c). This expression
matches any tree satisfying the following constraints (see Fig. 1 for an example):

– the root a has at least two children, b and c, adjacent and in that order; and
– the node b has three children: d, followed by any node, followed by e.

Analogous to ordinary regular expressions, caret (^) and dollar sign ($) anchor
a node to be respectively the first or last child of its parent. A period (.) is a
wildcard that matches any node.

a

f b

d g e

c

j k

h

^ $

Fig. 1. A tree matching a pattern (blue arrows besides the edges). In the pattern, each
arrow x → y means that node x has a child y. A shorter line without an arrowhead
(e.g. b− g) indicates a wildcard, where the child can be any node. Anchors ^ and $

mean that the pattern will match only the first or last child.

With TREs we encode interesting patterns in a program while disregarding
irrelevant parts. Take for example the following, nearly correct Python function
that prints the divisors of its argument n:

def divisors(n):

for d in range(1, n):

if n % d == 0:

print(d)

Figure 2 shows the simplified AST for this program, with two patterns over-
laid. These patterns are represented by the S-expressions

1. (Function (body (For (body If)))) and
2. (Function (name divisors) (args ˆ Var $)

(body (For (iter (Call (func range) (args ˆ . Var $)))))).

The first TRE encodes a single path in the AST and describes the program’s
block structure: Function−For−If. The second TRE relates the argument in the
definition of divisors with the last argument to range that provides the iterator
in the for loop. Since S-expressions are not easy to read, we will instead represent
TREs by highlighting relevant text in examples of matching programs:

def divisors(n):

for d in range(1, n):

if n % d == 0:

print(d)

The second pattern shows a common mistake for this problem: range(1,n)
will only generate values up to n-1, so n will not be printed as its own divisor. A
correct pattern would include the binary operator + on the path to n, indicating
a call to range(1,n+1).

Function

name

divisors

args

Var

n

body

For

target

Var

d

iter

Call

func

range

args

Num

1

Var

n

body

If

test

Compare

BinOp

Var

n

% Var

d

==
Num

0

body

Call

func

print

args

Var

d

^ $

^ $

Fig. 2. The AST for the divisors program with two patterns. Leaf nodes (in bold)
correspond to terminals in the program, i.e. names and values. Dashed red arrows
represent the pattern describing the control structure of the program. Solid blue arrows
encode the incorrect second argument to the range function.

2.1 Constructing patterns

Patterns are extracted automatically from student programs. We first canoni-
calize each program [12] using code from ITAP1. To construct TREs describing
individual patterns, we select a subset of nodes in the AST, and walk the tree
from each selected node to the root, including all nodes along those paths.

Depending on node type we also include some nodes adjacent to such paths.
For each comparison and unary/binary expression on the path we include the
corresponding operator. For function definitions and calls we include the func-
tion name. Finally, in all argument lists we include the anchors (^ and $) and
a wildcard (.) for each argument not on the path. This allows our TREs to
discriminate between e.g. the first and second argument to a function.

While pattern extraction is completely automated, we have manually defined
the kinds of node subsets that are selected. After analyzing solutions to several
programming problems, we decided to use the following kinds of patterns. Fig-
ure 2 shows two examples of the first two kinds of patterns.

1. We select each pair of leaf nodes referring to the same variable.

1 Available at https://github.com/krivers/ITAP-django.

https://github.com/krivers/ITAP-django

2. For each control-flow node n we construct a pattern from the set {n}; we do
the same for each Call node representing a function call.

3. For each expression (such as (F-32)*5/9) we select the different combina-
tions of literal and variable nodes in the expression. In these patterns we
include at most one node referring to a variable.

Note that in every constructed pattern, all Var nodes refer to the same vari-
able. We found that patterns constructed from such nodesets are useful for
discriminating between programs. As we show in Sect. 4, they are also easily
interpreted in terms of bugs and strategies for a given problem.

3 Learning rules

The goal of learning rules in this paper is to discover and explain common
approaches and mistakes in student programs. We use a rule learner called
ABCN2e, implemented within the Orange data mining library [2]. ABCN2e mod-
ifies the original CN2 algorithm [1] to learn unordered rules; modifications are
described in a technical report at https://ailab.si/abml.

General rule-learning algorithms, such as CN2, tend to generate many specific
rules. This produces more accurate results but makes rules harder to explain.
This section describes the problem-specific configuration of the rule-learning al-
gorithm for extracting relevant and explainable patterns from student programs.

Each program is represented in the feature space of AST patterns described
in the previous section. Based on test results each program is classified either as
correct or incorrect. A program can be incorrect for one of two reasons: either a)
it contains some incorrect pattern (a buggy pattern) that should be removed or
modified, or b) it is missing one or more programing constructs (patterns) that
should be present for the program to be correct.

Classification rules can express both reasons. For buggy patterns we learn
rules for incorrect programs, where each condition in the rule must express the
presence of a pattern. The condition of such a rule therefore contains a set
of patterns that imply a bug in the program. For missing patterns, we learn
another set of rules covering programs that are not covered by above rules.
These rules may contain missing patterns within their conditions, and describe
the missing constructs in a program that have to be implemented. All rules
explaining incorrect programs are called n-rules.

To learn explainable, meaningful and non-redundant rules, we impose the
following additional constraints on the rule learner:

– classification accuracy of each rule must exceed 90%, because we accept a
10% false-positive error as acceptable;

– each conjunct in the condition of a rule must be significant according to the
likelihood test, meaning that each pattern in the condition part is indeed
relevant (we set the significance threshold to p=0.05);

– a condition can have at most 3 patterns; and

https://ailab.si/abml

– each rule must cover at least 5 distinct programs – this avoids redundant
rules that represent the same error with a different combination of patterns.

Different approaches can be represented with rules explaining correct pro-
grams. A program is correct when it implements all required patterns and no
buggy patterns. There may be several possible sets of required patterns for each
exercise, with each set corresponding to a different approach to solving it.

We use the same constraints as in the case of n-rules and learn rules for
correct programs called p-rules. In this case, we always require that conditions
mention the presence of patterns, since it is easier to explain different approaches
of students with something they have written and not with something they have
not. To account for possible buggy patterns, the requirement to achieve 90%
classification accuracy was not evaluated on full data, but only on data not
covered by n-rules. Hence, a rule can cover an example with a specific approach
even though it contains a buggy pattern.

4 Interpreting rules

Learned rules can be used to analyze student programing. This section describes
several rules induced for two Python exercises: Fahrenheit to Celsius, which reads
a value from standard input and calculates the result, and Greatest Absolutist,
one of the introductory exercises for functions.

4.1 Fahrenheit to Celsius

The first problem in CodeQ Python course is to write a program converting from
degrees Fahrenheit to degrees Celsius. The program should ask the user to input
a temperature, and print the result. A sample correct program is:

F = float(input("Fahrenheit: "))

C = 5 / 9 * (F - 32)

print("Celsius: ", C)

Students have submitted 1177 programs for this problem, with 495 correct
and 682 incorrect programs. Our systems extracted 891 relevant AST patterns,
which were used as attributes in rule learning. The rule learner induced 24 n-
rules, 14 of which mention only presence of patterns, and 16 p-rules.

We first take a look at n-rules that mention only presence of patterns in their
conditions. The most accurate rule according to the rule learner was:

P20 ⇒ incorrect [208, 1]

This rule covers programs where the pattern P20 is present. It implies an incor-
rect program, and covers 208 incorrect and one correct program. P20 is the AST
pattern describing a call to the int function:

(Module (body (Assign (value (Call (func (Name (id int) (ctx Load))))))))

The second best n-rule covers 72 incorrect and no correct programs:

P5 ∧ P35 ⇒ incorrect [72, 0]

Pattern P5 matches programs where the result of the input call is not cast to
float but stored as a string. Pattern P35 matches programs where the value 32
is subtracted from a variable on the left-hand side of a multiplication. Sample
programs matching the first rule (left) and the second rule (right) are:

g2 = input() g2 = input(’Temperature [F]? ’)

g1 = int(g2) g1 = ((g2 - 32) * (5 / 9))

print(((g1-32)*(5/9))) print(g2, ’F equals’, g1, ’C’)

These rules describe two common student errors. The left program is incor-
rect, since it fails when the user inputs a decimal. The right program is incorrect
because the input string must be cast to a number. Not casting it (pattern P5)
and then using it in an expression (pattern P35) will raise an exception.

The two most accurate n-rules with missing patterns in their conditions are:

¬P0 ⇒ incorrect [106, 0]
¬P1 ∧ P16 ⇒ incorrect [100, 0]

Pattern P0 matches programs with a call to function print. A program without
a print is always incorrect, since it will not output anything.

The second rule covers programs with P1 missing and P16 present. P16
matches programs with a call to the print function, where the argument con-
tains a formula which subtracts 32 from a variable and then further multiplies
the result. P1 describes a call to the function float as the first item in an ex-
pression, i.e. = float(...). This rule therefore represents programs that have
the formula in the print function (P16 is present), however fail to cast input
from string to float (P1 is missing).

Let us now examine the other type of rules. The best four p-rules are:

P2 ∧ P8 ⇒ correct [1, 200]
P1 ∧ P42 ⇒ correct [0, 68]
P1 ∧ P8 ⇒ correct [3, 217]
P80 ⇒ correct [0, 38]

Patterns in the condition of the first rule, P2 and P8, correspond respectively
to expressions of the form float(input(?)) and print((?-32)*?). Programs
matching both patterns wrap the function float around input, and have an
expression that subtracts 32 and then uses multiplication within the print.

This first rule demonstrates an important property of p-rules: although pat-
terns P2 and P8 are in general not sufficient for a correct program (it is trivial
to implement a matching but incorrect program), only one out of 201 student
submissions matching these patterns was incorrect. This suggests that the con-
ditions of p-rules represent the critical elements of the solution. Once a student
has figured out these patterns, they are almost certain to have a correct solution.
A sample program matching the first rule is:

g1 = float(input(’Temperature [F]: ’))

print(((g1 - 32) * (5 / 9)))

The second and third p-rules are variations of the first. For instance, the second
rule describes programs that have the formula in the argument to the print

function. The fourth rule, however, is different. P80 describes programs that
subtract 32 from a variable cast to float. The following program matches P80:

g1 = input(’Fahrenheit?’)

g0 = ((float(g1) - 32) * (5 / 9))

print(g0)

4.2 Greatest Absolutist

In this exercise students must implement a function that accepts a list of numbers
and returns the element with the largest absolute value. One solution is

def max_abs(l):

vmax = l[0]

for v in l:

if (abs(v) > abs(vmax)):

vmax = v

return vmax

We have received 155 submissions (57 correct, 98 incorrect) for this exercise.
Due to its higher complexity and since the solutions are much more diverse,
we obtained 8298 patterns to be used as attributes in learning. High number
of patterns together with a low number of learning examples could present a
problem for rule learning: since the space of possible rules is large, some of the
learned rules might be a result of statistical anomalies. One needs to apply a
certain amount of caution when interpreting these rules.

The rule-learning algorithm learned 15 n-rules (7 mentioning only presence
of patterns) and 6 p-rules. Below we can see the two best n-rules referring to the
presence of patterns and two programs; the left one is covered by the first rule,
and the right one by the second rule:

P64 ⇒ incorrect [22, 0]
P2 ∧ P70 ⇒ incorrect [17, 0]

def max_abs(l): def max_abs(l):

vmax = 0 vmax = None

for i in range(len(l)): for v in l:

if vmax < abs(l[i]): if vmax==None or vmax<v:

vmax = l[i] vmax = abs(v)

return vmax return vmax

The pattern from the first rule, P64, matches functions returning the variable
that is used in the condition of an if clause without an application of another
function (such as abs). The left program demonstrates this pattern, where the
value vmax is compared in the if clause and then returned. According to the
teachers of the Python class, this error is common, because students forget that
they need to compare the absolute value of vmax.

The second rule contains two patterns. P70 (blue) matches functions contain-
ing the call to abs in an assignment statement nested within a for loop and an
if clause. P2 (red) matches functions that return the variable used in an assign-
ment statement within a for-if block. Such programs are incorrect because they
do not store the original list element. For example, if -7 has the largest absolute
value in the list, then the function should return -7 and not 7.

The best two n-rules with absence of patterns in condition are:

P1 ∧ ¬P11 ∧ ¬P131 ⇒ incorrect [34, 0]
P36 ∧ ¬P162 ⇒ incorrect [26, 0]

The first rule covers programs matching P1 (checks for a function definition in
the program) but missing P11 (if the iteration variable in a for loop is directly
assigned to another variable within an if clause) and P131 (whether the return
statement uses indexing, i.e. return l[?]). One such example is the above right
program: it contains a function definition, it does not directly assign the value of
v but uses its absolute value, and does not use indexing in the return statement.

This rule specifies two missing patterns, which makes is quite difficult to
understand. It does not directly state the issue with a given program: if one of
the two missing patterns were implemented, the rule would not cover this pro-
gram any more. Therefore, the questions is, which of these two reasons is really
missing? Different missing patterns could be understood as different options to
finalize the program.

The second rule identifies only one missing pattern. P36 matches a call to
max in the return statement, whereas P162 matches a call to max with the given
list as the argument. This rule covers, for example, the following program:

def max_abs(l):

return max(abs(l))

It uses max in the return statement, but does not apply it directly to the input list
l. Note that this program would fail because the function abs does not accept
a list argument.

The four most accurate p-rules induced by our rule learner were:

P11 ∧ P17 ∧ P35 ⇒ correct [0, 20]
P11 ∧ P27 ∧ P3 ⇒ correct [2, 34]
P519 ⇒ correct [0 9]
P27 ⇒ correct [6 38]

Sample programs covered by the first and second rules are:

def max_abs(l): def max_abs(l):

vmax = 0 vmax = l[0]

for v in l: for v in l:

if abs(vmax) < abs(v): if abs(vmax) < abs(v):

vmax = v vmax = v

return vmax return vmax

The first two rules and the above programs are similar. Both rules share a
common reason, P11 (blue in both programs), describing a pattern, where the
variable from the for loop is used in the right side of an assignment within the
if clause. P17 and P27 are also similar (red in both programs). The former links
the occurrence of a variable within the abs function in an if condition with the
variable from an assignment, whereas the latter links the same variable from an
if condition with the variable from the return statement. P35 matches variable
assignments to 0, hence the first rule covers solutions initializing vmax to zero.
P3 matches for-looping over the input list.

After inspecting all covered examples of the first and the second rule, we
found out that the first rule is only a more strict version of the second rule,
since all examples covered by the first rule are also covered by the second rule.
These two rules therefore do not describe two different approaches, but two
different representations of the same approach. Similarly, the fourth rule is a
generalization of the first two rules, containing only P27 within conditions. This
pattern seem to be particularly important. Of 44 programs, where students used
the absolute value of vmax in comparison and returned vmax at the end, 38 were
evaluated as correct.

The third rule describes a different pattern. It covers programs that define a
list containing values 2, 1, and -6. Defining such a list is evidently not necessary
for the solution of this exercise. Why would it then correlate with the correctness
of the solution?

To explain this rule we first have to describe how students test their programs.
One option is to simply use the Test button, which submits the program to a
server, where it is tested against a predefined set of test cases. The other option
is to click the Run button, which runs the program and outputs the results.
Those students who defined a list with values 2, 1, and -6 in their programs
are most likely using the second option. They create their own test cases and
then submit a program only when they are certain that it is correct. Since the
description of the exercise includes a single test case with values 2, 1, and -6,
most students use this list as the testing case.

On the other hand, given that the rule covers only nine programs, the prob-
ability that the rule is a statistical artifact is not negligible.

5 Evaluation and discussion

Evaluation was performed on a subset of exercises from an introductory Python
course, implemented in the online programming environment CodeQ2. Table 1

2 Available at https://codeq.si. Source under AGPL3+ at https://codeq.si/code.

https://codeq.si
https://codeq.si/code

Table 1. Solving statistics, classification accuracy, and coverage of rules for several in-
troductory Python problems. The second column shows the number of users attempting
the problem. Columns 3 and 4 show the number of all / correct submissions. The next
two columns show the classification accuracy for the majority and random-forest clas-
sifiers. The last three columns show percentages of covered examples: columns np and
n give covered incorrect programs (n-rules with presence of patterns and all n-rules),
and column p gives the percentage of correct programs covered by p-rules.

Submissions CA Coverage

Problem Users Total Correct Maj RF np n p

fahrenheit to celsius 521 1177 495 0.579 0.933 0.708 0.935 0.867

ballistics 248 873 209 0.761 0.802 0.551 0.666 0.478

average 209 482 186 0.614 0.830 0.230 0.338 0.618

buy five 294 476 292 0.613 0.828 0.234 0.489 0.719

competition 227 327 230 0.703 0.847 0.361 0.515 0.896

top shop 142 476 133 0.721 0.758 0.399 0.802 0.444

minimax 74 163 57 0.650 0.644 0.462 0.745 0.298

checking account 132 234 112 0.521 0.744 0.143 0.491 0.115

consumers anon 65 170 53 0.688 0.800 0.376 0.880 0.623

greatest 70 142 83 0.585 0.859 0.492 0.746 0.880

greatest abs 58 155 57 0.632 0.845 0.612 0.878 0.789

greatest neg 62 195 71 0.636 0.815 0.621 0.960 0.718

Total / average 2102 4811 1978 0.642 0.809 0.432 0.704 0.620

shows the number of users attempting each problem, the number of all / correct
submissions, the performance of majority and random-forest classifiers for pre-
dicting program correctness based on patterns, and percentages of covered pro-
grams by rules: np is the percentage of covered incorrect programs with n-rules
that contain only presence of patterns, n is the percentage of covered incorrect
programs with all n-rules, and p is the coverage of correct programs with p-rules.
Classification accuracies were obtained using 10-fold cross validation.

Our primary interest in this paper is finding rules to help manual analysis
of student submissions. The accuracy of automatic classification thus plays a
secondary role to the interpretability of our model, however it is a good measure
to estimate the expressiveness of patterns. We see that AST patterns increase
classification accuracy for about 17% overall. This result indicates that a signifi-
cant amount of information can be gleaned from simple syntax-oriented analysis.
Exceptions are the ballistics and the minimax problems, where there was no vis-
ible improvement. In both exercises, the set of used patterns was insufficient
to distinguish between incorrect and correct programs. To further improve the
quality of patterns, we will analyze misclassified programs in those two exercises
and derive new formats of patterns, which will enable better learning.

The coverages of particular types of rules are also promising. On average, we
can explain 43.2% of incorrect programs with the presence of patterns. Consider-
ing all n-rules, we can explain over 70% of incorrect submissions, however these
rules are somewhat harder to understand. Similarly, we can explain 62% of cor-

rect programs with p-rules. The remaining 38% of solutions tackle the problems
in ways that cannot be veiled by out current patterns or there are not enough
similar solutions to form a rule. This requires further analysis. For example, in
the checking account exercise the coverage of p-rules is only 11.5%.

We have demonstrated how AST patterns can be described with TREs, and
how such patterns can be combined to discover important concepts and errors in
student programs. Currently, analyzing patterns and rules is quite cumbersome.
We plan on developing a tool to allow teachers to easily construct and refine
patterns and rules based on example programs. Ideally we would integrate our
approach into an existing analysis tool such as OverCode [3].

References

1. Clark, P., Boswell, R.: Rule induction with CN2: Some recent improvements. In:
Machine Learning – EWSL-91. pp. 151–163. Berlin (1991)

2. Demšar, J., Curk, T., Erjavec, A., Črt Gorup, Hočevar, T., Milutinovič, M.,
Možina, M., Polajnar, M., Toplak, M., Starič, A., Štajdohar, M., Umek, L., Žagar,
L., Žbontar, J., Žitnik, M., Zupan, B.: Orange: Data mining toolbox in Python.
Journal of Machine Learning Research 14, 2349–2353 (2013)

3. Glassman, E.L., Scott, J., Singh, R., Guo, P.J., Miller, R.C.: OverCode: Visualizing
variation in student solutions to programming problems at scale. ACM Transac-
tions on Computer-Human Interaction (TOCHI) 22(2), 7 (2015)

4. Hovemeyer, D., Hellas, A., Petersen, A., Spacco, J.: Control-flow-only abstract
syntax trees for analyzing students’ programming progress. In: Proc. 2016 ACM
Conf. on International Computing Education Research. pp. 63–72. ACM (2016)

5. Huang, J., Piech, C., Nguyen, A., Guibas, L.: Syntactic and functional variability
of a million code submissions in a machine learning MOOC. In: Proc. Workshops
16th Int’l Conf. Artificial Intelligence in Education (AIED 13). pp. 25–32 (2013)

6. Jin, W., Barnes, T., Stamper, J., Eagle, M.J., Johnson, M.W., Lehmann, L.: Pro-
gram representation for automatic hint generation for a data-driven novice pro-
gramming tutor. In: Proc. 11th Int’l Conf. Intelligent Tutoring Systems (ITS 12).
pp. 304–309 (2012)

7. Lazar, T., Možina, M., Bratko, I.: Automatic extraction of ast patterns for debug-
ging student programs. In: International Conference on Artificial Intelligence in
Education. pp. 162–174. Springer (2017)

8. Levy, R., Andrew, G.: Tregex and tsurgeon: tools for querying and manipulating
tree data structures. In: 5th Int’l. Conf. Language Resources and Evaluation (2006)

9. Nguyen, A., Piech, C., Huang, J., Guibas, L.: Codewebs: scalable homework search
for massive open online programming courses. In: Proc. 23rd Int’l World Wide Web
Conf. (WWW 14). pp. 491–502 (2014)

10. Piech, C., Huang, J., Nguyen, A., Phulsuksombati, M., Sahami, M., Guibas, L.:
Learning program embeddings to propagate feedback on student code. arXiv
preprint arXiv:1505.05969 (2015)

11. Piech, C., Sahami, M., Huang, J., Guibas, L.: Autonomously generating hints by
inferring problem solving policies. In: Proc. 2nd ACM Conference on Learning @
Scale (L@S 2015). pp. 195–204. ACM (2015)

12. Rivers, K., Koedinger, K.R.: Data-driven hint generation in vast solution spaces:
a self-improving Python programming tutor. International Journal of Artificial
Intelligence in Education pp. 1–28 (2015)

	Syntax-based analysis of programming concepts in Python

