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In Programming Tutors
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Abstract—Data-driven intelligent tutoring systems learn to provide feedback based on past student behavior, reducing the effort
required for their development. A major obstacle to applying data-driven methods in the programming domain is the lack of meaningful
observable actions for describing the students’ problem-solving process. We propose rewrite rules as a language-independent
formalization of programming actions in terms of code edits. We describe a method for automatically extracting rewrite rules from
students’ program-writing traces, and a method for debugging new programs using these rules. We used these methods to
automatically provide hints in a web application for learning programming. In-class evaluation showed that students receiving automatic
feedback solved problems faster and submitted fewer incorrect programs. We believe that rewrite rules provide a good basis for further

research into how humans write and debug programs.
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1 INTRODUCTION

ROGRAMMING is increasingly recognized as a funda-

mental skill, with several countries already including it
in their national curricula. Many initiatives exist to make
programming education available to everyone, such as the
European Coding Initiative and Code.org

Intelligent tutoring systems (ITSs) can help achieve this
goal. An ITS is an educational tool that emulates a human
teacher in a one-to-one tutoring situation, which is much
more effective than teaching in a traditional classroom set-
ting [1]], [2]. Like human tutors, ITSs provide immediate,
personalized feedback to students [3]. While computer tu-
tors are not as effective as humans in many domains, they
can scale much better.

ITSs are typically problem-based: students solve prob-
lems while the tutor monitors their progress and provides
guidance when necessary or requested [4]. ITS authors must
anticipate correct and incorrect steps a student might take,
and define appropriate responses. Building a tutor that can
provide feedback for a wide variety of problems is thus
expensive and time-consuming [5].

Data-driven tutors alleviate authoring efforts by using
student data to construct or improve their feedback [6]. One
such method — the Hint Factory — was first implemented in
a logic tutor [7], where the task is to deduce a conclusion
from given premises. The tutor observes which inference
rules the students use in each state (a state is described by
the set of premises that have already been deduced), and
learns a policy for solving each problem. This policy is used
to provide hints to a new student who reaches a state the
tutor has seen before.

Methods like the Hint Factory work well for domains
where the problem-solving steps are chosen from a set of
well-defined actions. In the logic tutor, actions are inference
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rules like modus ponens. The user interface has a separate
button for applying each rule, so that the tutor can follow
students” actions.

In programming, however, the only observable actions
are edits to program code. While the action “use modus
ponens with premises A and A=B" tells us something useful
about what the student is doing, the action “insert the letter
e at position 42” does not. Since we can directly observe
student behavior only in terms of such actions, it is difficult
to break the process of writing a program down into a
sequence of meaningful steps.

A catalog of “programming actions” would allow us to
represent the process of writing a program as a sequence
of generic steps that can be compared between different
students. This would help discovering recurring concepts
or ideas in programming. The same set of actions could also
be used to generate new programs. For example, a tutor
could attempt to remove bugs in an incorrect program by
applying different possible actions, even if that program
has not been encountered before. Creating such a catalog
of programming actions is, however, far from trivial.

We propose a data-driven method to learn meaningful
actions in programming automatically. The idea is to ob-
serve how students write programs, and group related code
edits into rewrite rules (or simply rewrites). For instance, the
rewrite rule

for (i=1; i<=n; i++) — for (i=0; i<n; i++)
groups several character-level removals and insertions that
together fix a common off-by-one error. This rewrite rule
may be used on any program containing the fragment on
the left-hand side, by replacing it with the modified version
on the right.

Rewrite rules represent generic programming actions.
With such actions we can model debugging as search: to
fix an incorrect program, search for a sequence of rewrites
that transforms it into a correct program. Unlike primi-
tive actions (inserting and removing individual characters),
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rewrite rules provide enough context to significantly con-
strain the search and make it feasible.

Our method builds catalogs of problem-specific rewrite
rules automatically from past student data, while requiring
very little language-specific knowledge. We used the discov-
ered rewrite rules to debug student programs in a Prolog
tutor. To provide feedback to students, the tutor highlights
incorrect parts of the program based on the sequence of
rewrites needed to fix it.

We have performed an experiment to show that even
this simple, non-verbal feedback can significantly reduce
the problem-solving time and the number of incorrect sub-
missions before the student finds a solution. Still, further
research is needed to determine how and when to present
feedback for optimal learning outcomes. In this paper we
focus on describing the technical details of our approach
and establishing that it can be useful in the classroom.

The rest of this paper is organized as follows. The next
section gives an overview of related work on programming
tutors. Section B] describes how rewrite rules are discovered
and used. Section [d] gives a brief overview of the online
programming system CodeQ, which was used as a testbed
for evaluating our method. Experimental setup and results
are presented in section |5 The final two sections discuss
results and conclude the paper.

2 BACKGROUND AND RELATED WORK

The Lisp tutor [8], one of the earliest ITSs in general, uses an
extensive model of Lisp programming based on the ACT*
cognitive theory. The programming process was manually
formalized as a large database of productions like

If  the goal is to code the body of a function
that takes an integer argument

then try integer recursion and set subgoals to plan
the base case and the recursive case.

These rules yield a powerful cognitive model that allows
the tutor to both track student actions and generate (using
a planning algorithm) new programs. Feedback can be
produced by analyzing differences between the student’s
actions and the generated plan.

On the flip side, developing the cognitive model to cover
30-40 hours of instruction took about three person-years [9].
While several successful tutors employ cognitive models for
domains such as high-school algebra [10]], physics [11], and
deductive logic [7], there have been practically no other
attempts to create a generative model of programming in
terms of goals and plans. The main problems are the com-
plexity of the domain and the large gap between observable
user actions and concepts in the cognitive model.

Instead of a generative model, many programming ITSs
specify only the features of correct and incorrect solutions.
Constraint-based modeling [12] is the most prominent ap-
proach, exemplified by the SQL tutor [13]. Given a student-
submitted SQL query, the tutor checks it against a set of
constraints. Each constraint specifies which submissions
it applies to (relevance condition), and the requirements
those submissions should meet (satisfaction condition). Like
productions in cognitive models, constraints are usually
specified as if-then rules; for example:

If  the FrROM clause contains the JOIN keyword
then it must also contain the onN keyword.

Constraints, however, can only be used to describe indi-
vidual submissions, while the program’s evolution from one
submission to the next is ignored. This makes constraint-
based models easier to develop, and tutors exist for many
programming languages including Java [14] and Prolog [15].
For the same reason, constraints are not well-suited for
describing the process of writing a program.

Regardless of the underlying model, authoring an ITS
requires significant knowledge-engineering effort, ranging
from tens to hundreds of hours of development time to
produce one hour of educational content [16]. Data-driven
tutors address this by automatically building and refining
their knowledge base.

Several data-driven programming tutors have adapted
the Hint Factory approach: they represent the problem do-
main as a solution space of incorrect and correct submissions,
and use student data to fill in common transitions between
submissions [17], [18], [19]. Like the logic tutor described
in the previous section they use the solution-space graph to
direct students towards the closest correct submission.

In the programming domain, however, transitions in the
solution space usually do not correspond to meaningful
problem-solving steps. A transition s; — sy between two
programs in the solution space means only that a represen-
tative number of students first submitted the program s;
and then ss. If a program cannot be located in the existing
solution space, a tutor cannot analyze it (without, for ex-
ample, looking for the nearest known submission based on
some measure of similarity).

Another problem for data-driven programming tutors
is the size of the state space for even the simplest prob-
lems. Programming exercises typically have many solutions,
stemming from different possible approaches and syntactic
and semantic variations [18]], [20]. This problem has been
addressed using canonicalization [21], for example by re-
naming variables and rewriting expressions into normal
forms. Linkage graphs may be used to find equivalent
programs based on dependencies between variables [17]. In
both cases, states represent equivalence classes of programs.
Another interesting approach finds equivalent code phrases
in student submissions based on unit-test results [22].

The Error Model Language [23] has been used to define
correction rules or transformations for synthesizing new pro-
grams, and has been used for debugging student programs.
Correction rules encode more information than our rewrite
rules, but must be specified by the instructor. Rewrites
discovered by our method could help with this specification
by serving as a starting point for defining correction rules.

Other languages for specifying transformations, such as
Maude [24] and Stratego/XT [25], support more advanced
rules for rewriting programs. However, transformations
defined in those languages cannot be directly mapped to
student actions observed in a programming tutor, as they
operate on a higher level than text editing.

3 DEBUGGING WITH REWRITE RULES

Developing a full cognitive model of programming, capable
of generating a working program from scratch, is a complex
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TABLE 1
Example Rewrite Rules for the Predicate rev (A, B)

# Path Original fragment Replacement Comment

1 clause > head > compound : rev([A,B], [B,A]) — rev([],[]) Overly complex base case.

2 clause > head > compound : rev([A|B],C) — rev([],[]). rev([A|B],C) Missing base case.

3 clause > body >and > compound : conc (A,B,C) — conc (A, [B],C) Incorrect usage of conc.

4 clause > body >and > binop : A= [B|C] — conc(B, [C],A) Incorrectly appending element C to list B.
5 clause >body »and : rev (A,B), C= [B|D] — rev(A,B), conc(B, [D],C) Incorrectly appending element C to list B.

task even for human experts. Creating the model automat-
ically, and only in terms of observable student actions, is
even more difficult.

That said, our in-class experience shows that solving a
programming exercise typically proceeds in two stages. Stu-
dents write the entire program first, test it, then spend most
of the time making relatively small modifications to remove
bugs; similar behavior has been noted in [21]. Before the first
test, there are usually few or no intermediate versions of the
program that make syntactic or semantic sense. This stage
is relatively short and serves only to “load” the student’s
initial conception of the program into the editor.

We focus on the second stage of the process: debugging
an incorrect program. During this stage, code modifications
are easier to follow because they are usually localized to
certain parts of the program. Additionally, the unmodified
parts of the program serve as context, allowing us to deter-
mine where a particular rewrite may be applied. Modeling
the debugging phase of the problem-solving process is thus
easier than creating a full-fledged model of programming,
while potentially just as useful in a tutoring context.

In the following subsections we describe the two main
components of our approach: how to extract rewrite rules
from student traces, and the algorithm for debugging stu-
dent programs using these rules. We also explain how the
rewrite sequences discovered by our method may be used
to provide feedback in a programming tutor.

Before continuing, let us clarify several terms used
throughout this paper. An attempt corresponds to one stu-
dent solving one problem. During each attempt a student
can submit several programs; these submissions are checked
using a predefined set of test cases. A solution is a correct
program with respect to the given tests, i.e. a program that
passes all test cases. Note that a correct program in this sense
is not guaranteed to be an absolutely correct solution to the
given problem. For an attempt to be successful, the student
must submit at least one solution. The sequence of observed
user actions during an attempt is called a trace.

3.1 Example: Reversing a List

We first explain the structure and application of rewrite
rules on the list-reversal problem in Prolog. The goal of this
problem is to write the predicate rev (List,Reversed),
which reverses the order of elements in List to create a
new list Reversed.

Our method discovered about 50 rewrite rules from stu-
dent traces for this problem. Table [1| gives some examples.
Each rule is of the form path:a — b, where a is the original
fragment and b its replacement. The path tells us where in a

program’s abstract syntax tree (AST) a rule may be applied.
For each rewrite rule, the last column briefly describes the
mistake it fixes. Since our approach is mostly language-
independent, we explain Prolog only briefly in the following
subsections. Here we point out that [] denotes the empty
list, while [X|L] denotes the list with head X and tail L.

Note that rewrite rules use normalized variable names,
so that the same rule can be used regardless of actual names
chosen by the student. The a and b parts of a rule are stored
as sequences of tokens (such as rev, [ or List), allowing us
to ignore differences in white space.

Several rules may represent the same modification.
Rules 4 and 5 in Table [1] are like this, with the latter rule
providing more context on the left-hand side and thus
establishing a stronger limit on its applicability. We could
prune the ruleset and keep only the most generic version
of each rule - that is, the rule with the shortest left-hand
side. However, specialized rules are more likely to result in
a correct program. Consider a rule with the entire program
on the left-hand side: we can be sure that applying such a
rule will fix the error. On the other hand, it will only be
applicable to that program. We want rules to be as specific
as possible while remaining applicable to many programs.

A student might submit the following program as the
initial version of the list-reversal predicate:

rev ([Head|Tail]l, Reversed) :-—
rev (Tail,ReversedTail),
conc (ReversedTail, Head, Reversed) .
This is an attempt at the naive recursive solution [26], which
reverses the Tail of the original list and appends the Head

clause

head

compound

rev([H|T],R) compound

[conc (RT, [H] ,R)] b

Fig. 1. The AST representing the single Prolog clause with the head
rev ([H|T],R), and a body consisting of two goals rev (T, RT)
and conc (RT, [H],R). The original fragment a at path from AST
root is replaced with the new version b.
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(first) element at the back of ReversedTail. The program
has two mistakes: (1) the base case is missing (reversing the
empty list), and (2) all three arguments to the conc predicate
should be lists (whereas Head is only one element).

Figure [I| shows the AST for this program (simplified
by omitting some nodes and shortening variables names).
In general, a rewrite rule path:a—b is applicable to any
program fragment that matches a and can be reached by
following path from the root of the program’s AST.

Only the second and third rewrite rules from Table|1|are
applicable to this program. Figure [I| shows the application
of the third rule, resulting in the new version (parts different
from the previous version are shown in bold)

rev ([Head|Tail], Reversed) :-—
rev (Tail,ReversedTail),
conc (ReversedTail, [Head], Reversed) .
which correctly appends Head to the list ReversedTail.
The missing base-case clause can be added using the second
rule, yielding the final, correct program:
rev([],[]).
rev ([Head|Tail], Reversed) :-—
rev (Tail, ReversedTail),
conc (ReversedTail, [Head], Reversed) .

This list-reversal program contains two clauses: the first
line states that reversing the empty list [] yields again the
same list, and the remaining three lines describe how to
reverse a nonempty list [Head|Tail].

3.2 Solution Traces

To find rewrite rules, we keep a trace for each attempt: the
sequence of all observed actions, such as inserting/deleting
characters and submitting a program for testing.

Tracking changes at the character level allows us to ob-
serve program modifications directly, without having to use
a string- or tree-edit distance to extract differences between
successive submissions. This way the evolution of each pro-
gram fragment can be tracked across multiple submissions,
independently from other changes to the program.

Fig. 2| shows an example trace for a successful attempt
at solving the list-reversal problem. The top (thick) line
represents the sequence of actions. Only the four “submit”
actions are shown; insertions and deletions that modify the
program from one version to the next are omitted.

The initial submission contains several bugs: a missing
base case, using the wrong list notation, and incorrectly
appending H to the end of the reversed list. Due to the
missing base case, this program passes no tests.

The second submission fixes the list notation error by
replacing [H,T] (a list with two elements) with [H|T] (a
list with the head element H and tail T). Since the base case
is still missing, the modified program also passes no tests.

The next submission adds the base-case clause, allow-
ing the program to pass (only) the simplest tests of re-
versing the empty list. Finally, the concatenation predicate
conc (A, B, C) is used to correctly append an element to the
list, resulting in the correct implementation of rev (L, R).

3.3 Finding Rewrite Rules

We extract rewrites by tracking how individual program
fragments evolve in a student’s trace. A fragment is any

4

contiguous sequence of tokens in a program. Instead of
tracking all possible fragments, we pick only the “interest-
ing” fragments according to the following considerations.

First, a program with n tokens contains (n;rl) nonempty
fragments. Tracking all possible fragments would result in
many “nonsensical” rewrite rules like

,A,B),B= — , [A],B),B=
While such rules can be used for debugging, a large catalog
of rules means a large branching factor, slowing down the
search for a correct program. Second, our goal is to find
meaningful transformations that can give us some insight
into the programming process. For instance, the rule
conc(A,B,C) — conc (A, [B],C)
describes the same modification much better.

For these reasons we require the left-hand side of a
rewrite represent a complete syntactic unit. Specifically,
we consider only fragments corresponding to subtrees of
certain non-terminals in the program’s AST. In Prolog, we
track fragments representing the head of each clause and
the goals in its body. For example, the AST in Fig. |1 contains
one clause with two goals (subtrees of the “and” node).

We describe the algorithm for extracting rewrites below.
In a previously published version we tracked individual
lines in the program’s code, allowing us to extract rewrites
without parsing the program [27]. This paper presents a new
version of the algorithm using a more general representation
for rewrites: since each line of code corresponds to some
fragment, the new approach subsumes the previous version.
Additionally, it does not rely on a particular coding style
and allows us to use AST paths as context for rewrites. The
new algorithm does require syntactically correct programs;
we do not consider that a problem, however, since syntactic
errors can be handled sufficiently well by the interpreter.

When extracting rewrite rules from a trace, we keep a set
F of tracked fragments to follow the evolution of interesting
fragments between submissions, and a set 12 of extracted
rules. For every action in the trace we update these sets
depending on action type, as follows:

o Submission. For each interesting fragment in this sub-

mission we add a new item (a, path, t, start, end) to
F, where a is the fragment at path from AST root
spanning character indexes from start to end, and t
is the number of tests passed by this submission. We
track the fragment’s evolution by updating start and
end as characters are inserted and deleted.
For each item already in F, we check whether the
current submission passes more tests than the stored
value t. If so, we add a new rewrite rule path:a — b to
R, where a is the stored fragment with AST path, and
b is the modified fragment in the current submission
(delimited by the updated indexes start and end — see
the next item).

o Insertion/deletion. For every tracked fragment (a, path,
t, start, end) in F' we update the indexes start and end
that delimit this fragment. If a character is inserted
in front of the fragment, we increment both start and
end; if a character is deleted within the fragment, we
only decrement end; and so on.

Fig.[2|shows three of the tracked fragments (underlined)
from the first two submissions. Several other fragments are
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5/5 tests passed:
rev([], X)
rev(X, [])

(
(
2/5 tests passed: rev([42], X)
(
(

rev([], X) rev([s,k,c,d,d], X)
0/5 tests passed 0/5 tests passed rev(X, [1) rev(X, [s,k,c,d,d])
rev([],[]). rev([],[]).
rev([H,T],L) :- rev([H|T],L) :- rev([HIT],L) :- rev([HI|T],L) :-
rev(T,R), rev (T,R), rev(T,R), rev (T,R),
L = [RIH]. L = [R|H]. L = [R|H]. conc (R, [H], L) .
) T M M T
| | | |
rev ([H,T],L) } 1 > rev ([H|T |
clause » head Dcompound: | | :
L = [R|H]| } } ' conc (R, [H], L)
clause »body »and »binop | \ | \
| | rrev([1,[1). !
! rev ([H|T],L)t - !

clause > head » compound

Fig. 2. Sequence of for distinct submissions for an attempt at solving rev (A, B) .

rev ([H|T],L)

Each box shows the content of the student’s program at one

point during the problem-solving process, with the rightmost box showing the final, correct program. Tracking changes to the underlined fragments

yields the three shown rewrite rules.

tracked but omitted in the figure for clarity. The arrow
for each fragment extends from the submission where it
is added to F' to the submission where the corresponding
rewrite rule is added to R.

For example, in the first submission we add the fragment
rev ([H,T],L) and its AST path to F. While this fragment
is fixed by the second submission, no rewrite is added at
that point because the program still passes no tests (due to
a missing base case).

We keep tracking both marked fragments, and also add
(among others) the new fragment rev ([H| T] . The third
submission passes two tests, so we add rewrltes for the
modified fragments to R. Similarly, the final submission
modifies the second fragment from the initial version (and
passes more tests), so we add the corresponding rewrite.

By directly observing insertions and deletions, we are
able to follow modifications to each part of the program
independently. This approach also allows for overlapping
fragments that modify the same part of a program, as is the
case for the first and third fragments in Fig.

We could add rewrites for every submission, regardless
of how many tests it passes, or even for program versions
between submissions. We found, however, that doing so
yields many invalid rules that are more likely to break a
program further than fix it. By only considering improved
submissions (based on the number of passed test cases),
discovered rules are more likely to be useful for debugging.
That said, the number of passed test cases is only a rough
measure of correctness. Finding appropriate “checkpoints”
at which to consider rewrites is an interesting topic that
would benefit from further research.

3.4 Rewrite Probabilities

After we have extracted rewrites from all traces for a prob-
lem, we associate a probability with each rewrite to guide

the debugging algorithm described in the next section. This
probability describes how likely a rewrite path:a — b is used
in a program that contains the fragment a at path from the
root of program’s AST.

Specifically, we calculate the conditional probability of
using a rewrite 2 — b when the program contains the frag-
ment 4 (the AST path must also match, but we omit it here
for clarity) as:

# of traces containing a — b

pla = bla) = >, # of traces containing a — =~

We wish to avoid assigning very high or very low
probabilities to rewrite rules. If the probability of a rewrite
is too low, it will rarely or never be attempted during de-
bugging; on the other-hand, very high-probability rewrites
can prevent less common alternatives from being explored.

For this reason we compress the range of probabilities
using the logistic function with steepness £ = 3 and the av-
erage probability p = avg(p) as the midpoint. We calculate
the final value p’ for each probability p as:

1
1t eFop "

P =
This ensures that the values of p’ are approximately between
0.2 and 0.8, while leaving probabilities close to the average
unchanged. The function and parameters were chosen ad
hoc; they performed well in our evaluations, but better
options might exist.

3.5 Debugging

We formalize the task of debugging an incorrect program as
a search for an appropriate sequence of rewrites. We keep a
priority queue of generated programs. In every iteration we
test the highest-priority program in the queue; if it is correct,
we return it along with the corresponding rewrite sequence.
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Otherwise, we use applicable rewrite rules to generate new
programs. The algorithm is outlined below.

Input: incorrect program P, catalog of rewrite rules R
Output: correct program with associated rewrite sequence

let () be the empty priority queue
let Sp be the empty rewrite sequence
add (P, Sp) with priority 1 to priority queue Q
while @ not empty do
pop (P, S) with highest priority ¢ from Q
if P is correct then
return (P, S)

forallr € R do
if rule r is applicable to P then
apply r to P to get new program P’
append r to S to get new rewrite sequence S’
add (P’, 5’) to Q with priority ¢ * p(r)
/* p(r) is defined in previous section */

Essentially, this algorithm performs a best-first search
guided by rewrite-rule probabilities. Specifically, we define
the “probability” of a sequence of rewrites 7173 . .. 7, as the
product of the probabilities of individual rewrites:

n

p(rire...ry) = Hp(n-).

i=1

The algorithm thus first visits programs resulting from
highest-probability rewrite sequences. This heuristic is
based on the assumption that rewrites that were used in
more traces are more likely to reflect successful problem-
solving strategies. By using the product of probabilities, we
also implicitly prefer shorter rewrite sequences.

Since we use this algorithm in an interactive application,
we terminate the search after some time if no solution is
found. For this study we used a timeout of three seconds. An
ordinary desktop computer can generate and test between
a few ten and a few hundred programs in that time, with
testing being (by far) the most expensive operation.

Using a prototype version of the described algorithm
we were able to fix approximately 60 percent of incorrect
programs [27]. For over 80 percent of the programs we can
fix, fewer than a hundred new programs had to be generated
before a corrected version was found. Besides improving the
representation of rewrites, this paper extends our prior work
with an experimental evaluation of rewrite-based hints in
the classroom.

3.6 Feedback to Student

Once a sequence of rewrites has been found that fixes an
incorrect program, it must be presented to the student in
a way that is conducive to learning. Showing the exact
rewrites required would constitute a botfom-out hint, which
would remove an opportunity to practice debugging.

In the present study we wished to determine whether
useful feedback can be served without any predefined
knowledge (by using feedback templates or similar). To gen-
erate hints from a sequence of rewrites we therefore simply
mark program fragments that are touched by one or more
rewrites. We distinguish three cases and highlight them

% reverse a non-empty list
[rev([Head|Tail], Reversed) :-
% reverse tail
rev{Tail, RevTail),
% append head to reversed tail
conc(RevTail, Head, Reversed).

Check the highlighted part.

Fig. 3. Incorrect program with automatic highlights. The first (green)
highlight indicates the position where another clause must be inserted,
while the second (yellow) highlight points out an incorrect argument to
the conc predicate.

with different colors: adding (green), removing (red), and
modifying (yellow) fragments. Fig. [3| shows automatically
generated highlights for the example in Fig.

Note that we only highlight existing fragments that are
actually modified. The green highlight corresponding to the
rewrite

rev([A|B],C) rev([A|B],C)
thus only indicates the position where a new clause should
be inserted — at the beginning of the program. The second
rewrite

conc (A,B,C) — conc (A, [B],C)
actually corresponds to two insertions (placing a bracket
on either side of the variable Head). However, we show
insertions that are very close together as one “modify”
(yellow) highlight instead.

— rev([],[]).

4 CODEQ

We evaluated the effect of automatically generated hints
using CodeQ), a free web application for solving program-
ming exercises CodeQ provides an integrated online envi-
ronment for writing and running programs in Prolog and
Python.

A web application eliminates the overhead associated
with solving programming exercises, such as installing an
interpreter and loading source files, or learning to use an
advanced IDE. Students log in, select a problem to solve and
can immediately start coding; at any time they can log out
and resume their attempt later. Many students pointed out
these features when asked what they like about the system.

Fig. ] shows the main screen for the Prolog list-reversal
problem. Problem description is given on the left-hand side
and includes one or more examples of correct program
behavior. Feedback from the tutor is displayed below. The
right-hand side contains a code editor and an interactive
prompt for submitting queries to Prolog. The current pro-
gram is loaded into the Prolog engine automatically with
every query. Students can request feedback from the tutor
using the buttons above the editor.

The Plan button provides additional advice when the
student is unsure about how to approach a problem. Plan

2. Available online at https://codeq.si/. Source code is available
under AGPL3+ at https://codeq.si/code/,
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rev/2

rev(L1,L2) :the list L2 is obtained from L1
by reversing the order of the elements.

?- rev([1,2,3], X).

Plan Test
% reverse a non-empty list
rev([Head|Tail], Reversed) :-
% reverse tail
rev(Tail, RevTail),
% append head to reversed tail
conc(RevTail, Head, Reversed).

X = [3,2,1].
?2- rev([], X).
X = 1].

Your code passed 0/ 5 tests.

All three arguments of predicate conc/3 are
lists. Are you sure you used it properly?

This is one of the most rewarding exercises.
Classic recursion! Try to reduce the problem
into a smaller one. That, of course, means
reducing it to a shorter list.

line 4, column 24

Fig. 4. CodeQ problem-solving screen. The left side gives a description of the problem with examples of correct behavior. Feedback in response to
Plan and Test buttons is output below. On the right there is a code editor and an interpreter for running queries.

messages are written by the instructor and are included in
problem definitions. In Fig. [ a plan has been requested and
shown (bottom paragraph in the left column). No limits are
imposed on requesting plans, but students are encouraged
to do so only as a last resort when stuck on a problem.

A program may be submitted at any time using the Test
button. As in most programming tutors, testing is done by
checking program outputs on a predefined set of inputs.
CodeQ responds with the number of test cases the program
answered correctly. If additional feedback is available, a
Hint button appears along with the test results. This allows
students to decide whether to ask the tutor for help, or try
finding the error on their own. In this example, the hint has
already been requested and shown for the program from the
previous section.

Feedback is taken from several sources. Any syntax
errors reported by the interpreter are relayed to the student
directly. For every problem, a hint function may be defined
manually to look for typical mistakes. If the hint function is
not defined or finds no bugs, CodeQ attempts to debug the
program automatically using our method.

Highlights for the program in Fig. [3| have been been
generated from automatically discovered rewrites. For the
same program, the manually coded hint function returns
the following message (also shown in Fig. [4):

“All three arguments to the conc predicate must
be lists. Are you sure you have used it properly?”

The manual hint function reports a single mistake each time.
Once it is fixed, further errors are reported. The order in
which errors are detected and reported is determined by the

teacher when defining the hint function. After correcting the
call to conc in this program, the next message would be:
“The base case appears to be missing. Which list is
the easiest to reverse?”

While automatic hints highlight fragments in the code
editor, manual hints appear as explanations below the prob-
lem description. We discuss the differences and potential
uses for the two kinds of hints in Sect.

5 EVALUATION

Previously we have demonstrated that our method is able
to generate hints for many incorrect programs [27]. With
this study we wished to determine whether feedback —
coded manually or generated automatically — is actually
helpful to students. To this end, we evaluated CodeQ in the
usual classroom setting. On the one hand, performing the
experiment during regular lab sessions limited somewhat
our design options. On the other hand, evaluating a tutoring
system in a real-world situation should provide the most
pertinent results.

In this experiment we considered the time needed to
solve each problem, and the number of incorrect submis-
sions made before reaching a solution. We found that the
availability of either automatic or manually coded hints
significantly reduced both measures, allowing students to
solve more problems in the same amount of time. Existing
research suggests that test achievement is strongly related
to the number of problems a student has solved, with the
nature of feedback messages playing a secondary role [28].

We thus establish that our method can serve a useful
role in a programming tutor. While hints based on rewrite
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rules helped the students perform better, these experiments
do not tell us in what way hints improved the students’
understanding. How to generate and present feedback to
optimize learning therefore remains an open question.

5.1

We performed the experiment during three regular Princi-
ples of Programming Languages lab sessions in the spring
semester of 2016, at the Faculty of Computer and Informa-
tion Science, University of Ljubljana. The purpose of lab
sessions in this course is to familiarize students with Prolog
programming. At the beginning of each session the instruc-
tor explained new concepts (Prolog basics with recursion,
lists, and arithmetic) and showed a solution to a sample
problem on the whiteboard; the same explanation was also
available in written form for reference. Students then solved
exercises for the remainder of the session.

A total of 119 students were enrolled in the course.
Students who have taken the course before (without passing
the final exam), exchange students and those who enrolled
after the class had started were excluded from the study,
leaving 76 participants. They were randomly assigned to
three groups: no hints, automatic hints only, and manual
hints only. All students received test results, feedback about
syntax errors and had the option of using the Plan button.
To ensure the groups were balanced we controlled for the
average grade received on exams in the first-year (for all
classes, and only for programming classes). Table [2| shows
details about the groups.

Experimental Design

TABLE 2
Experimental Groups

Group | N Average grade (<6 = fail, 10 = best)
All exams Programming exams
Nohints |25 | u =794 0 =0.79 u=7.90 o =0.98
Automatic (26 | p =792 ¢ =080 pu=790 o=1.19

Manual 25|y =792 0 =084 pu=8.08 o=1.10

The lab sessions covered nine problems from the Family
relations group and 18 problems from the Lists group. Four
of those problems were either new this year (with no data
available for automatic hints) or were solved by the teacher
as examples; we exclude these problems from our analysis.

Students solved problems in the CodeQ programming
environment. Those who did not wish to participate in the
study could use regular SWI-Prolog or create an anonymous
account. Because the study was done during regular classes,
a teacher was available for help. Students were however
encouraged to solve problems on their own for the duration
of the study, consulting hints when necessary. We marked
cases where a student was unable to finish an exercise
without teacher’s help and exclude such attempts from the
analysis. There were 30 attempts with teacher intervention,
out of 1,221 attempts in total. All hints were enabled after
the first three lab sessions so as to minimize the potential
disadvantage for students in the no hints group.

5.2 Data Set

We have collected solution traces for the past three iterations
of the same course (spring semesters in the years 2013 to
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2015) using an online application similar to a simplified
version of CodeQ. These data were used to learn rewrite
rules. On average our method discovered 42 rewrite rules
per problem.

Altogether 355 students have attended the course over
the past three years. Of these, 254 students have solved ten
or more problems using the online environment. Overall
we have collected traces for 4,649 successful solutions to
problems considered in this study, for an average of 202
solutions per problem. The distribution of attempts across
problems is similar to this year’s, shown in Fig.[5|in the next
subsection. The number of students attempting to solve each
problem drops to a half by the end of the third session, and
keeps decreasing for the remainder of the course.

5.3 Results

Fig.|5|graphs the number of students attempting and solving
each exercise during the study. Problem difficulty increases
overall and within each group; both trends can be clearly
seen in the graph. The drop in the number of attempts is
especially noticeable after the first session; this is probably
due to students who come in only once to check out the
class. We observed no difference in attrition rates between
the three experimental groups.

| —m— all attempts
—— successful attempts

Attempts
B
o
T

w
o
T

10

aunt
shiftleft |-
rev

len
sum -
min -
max |-
sublist |-

sister -
divide |-

grandparent -
brother |-
cousin -
ancestor
descendant -
memb -

del -

dup -

conc
permute
shiftright |-
palindrome -
even/oddlen -

Problem
Fig. 5. Number of students attempting and solving each problem.

Other authors have noted the high variability of sub-
missions characteristic for the programming domain [18],
[22]. Our experiment confirms this. After normalizing sub-
mitted programs by removing superfluous white space
and renaming variables, 2,978 distinct correct and incorrect
submissions were observed across all attempts (including
unsuccessful attempts without a correct submission). Only
228 of those programs have been submitted by more than
one student. Fig. [f] shows how many students submitted
individual programs. Note that the x-axis uses a logarithmic
scale; even so, the long tail of unique submissions remains
apparent.

Table [3| breaks down successful solutions by problem.
The second column (Time) shows the average solving time
for each problem, defined as the sum of time deltas between
successive actions. We only consider actions before a correct
solution is reached (sometimes students experiment with
the code after it passes all tests — we ignore such actions).
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Fig. 6. Number of students submitting each distinct program.

Time deltas are capped at 15 minutes; if a student is idle
longer than that, we consider them to have gone off-task.
The third column (Subs.) shows the average number of
incorrect programs submitted before a submission passed
all tests.

The remaining columns show the average number of
hints offered (by displaying the Hint button after an incor-
rect program is submitted) during one attempt in the two
hint groups, and the percentage of those hints that were
actually viewed (the student pressed the Hint button). Due
to an unfortunate oversight, these data are not available
for the first week of the study. Exercises in the first group
serve as an introduction to Prolog and are not very difficult,
evidenced by the low number of incorrect submissions.

Table [3| shows that many more hints were offered to
the manual group. For most problems, one or more generic
“catch-all” hints were defined, which would always trigger
when more specific feedback was not available. Such hints
present general instructions, for example “check that the
recursive rule is correctly implemented”. This probably
contributed to the fact that the manual group consulted a
significantly lower percentage of hints — while the automatic
group viewed 73 percent of all offered hints, the manual
group only viewed 49 percent of hints.

To see whether hints help students solve problems, we
measured the time and number of distinct incorrect sub-
missions before a correct program was submitted. Since
problems vary in difficulty, we normalized both values to
the average across all attempts for each problem. Table [
shows the average and standard deviation for problem-
solving time and number of incorrect submissions.

Overall, students receiving no hints needed 7, = 1.15
times as long as the average to solve a problem, while
students receiving either automatic or manual hints needed
T4 = Ty = 0.91 as long. Availability of hints also reduced
the number of submissions required before reaching a solu-
tion. Students in the no hints, automatic and manual groups
submitted Sy = 1.18, S4 = 0.94 and Sj; = 0.84 as many
distinct incorrect programs as the average.

Solving times and submission counts are not distributed
normally, so we used the Kruskal-Wallis H-test to determine
the significance of our results. Statistically significant results
in Table [4| are marked with * (p < 0.05) or ** (p < 0.01).
We found a significant difference between T versus T4 and
T, and between S versus S4 and S)y,. The difference in
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TABLE 3
Average Time, Incorrect Submissions, and Hints per Attempt
Time Subs.| Automatic hints Manual hints
Problem .
(s) (#) | Offered Viewed | Offered Viewed
grandparent | 99 0.3 n/a n/a
sister | 379 3.0 n/a n/a
brother | 92 0.7 n/a n/a
aunt | 191 0.8 n/a n/a
cousin | 433 2.1 n/a n/a
ancestor | 255 1.0 n/a n/a
descendant | 223 1.1 n/a n/a
memb | 604 2.1 1.10 64% 2.38 42%
del | 788 3.8 1.62 71% 4.83 79%
dup| 987 54 0.57 100% 7.60 62%
conc | 1174 4.5 2.07 48% 0.91 60%
divide | 1188 6.8 2.78 52% 7.00 57%
permute | 1168 4.4 1.40 71% 4.67 54%
shiftleft | 566 2.4 1.25 60% 2.15 46%
shiftright | 595 2.6 0.67 67% 2.44 50%
rev| 706 3.4 1.67 73% 3.38 19%
palindrome | 435 3.4 2.40 88% 3.11 54%
even/oddlen | 357 1.9 1.20 83% 3.00 56%
len| 241 19 0.71 80% 2.38 32%
sum | 124 0.8 1.25 80% 2.67 25%
min | 625 2.7 0.75 100% 2.86 45%
max | 96 0.8 1.00 67% 2.40 67%
sublist| 705 3.7 0.75 67% 3.00 43%
TABLE 4

Relative Time and Number of Submissions Until Solution

Group Solving time (T") Submission count (.S)

No hints p=115 o=1.21 p=118 o =2.01
Automatic | g =0.91* ¢ =073 p=0.94* o =1.48
Manual pn=091* ¢=0.74 uw=0.84"* ¢ =1.29

solving time between none (7p) and automatic (1'4) groups
is significant at the level of p < 0.01. The same holds for the
difference in the number of submissions between none (Sy)
and manual (Ss) groups.

5.4 User Survey

After the experiment we conducted a survey to see how well
CodeQ was received by the students. The survey consisted
of four scaled questions, and three optional open-ended
questions asking for comments and suggestions about the
system. Table |5/ shows mean responses to the scaled ques-
tions for each experimental group. In the last two questions,
“feedback” refers to automatic or manual hints, test results,
syntax errors, and planning messages. Note that the best
answer for the last question is 1.

There is some variation in student responses across the
three groups. However, none of the differences approaches
statistical significance. Nearly all students answered 4 or
5 to the first two questions. Responses to questions 3 and
4 show that verbal feedback is more useful and easier
to understand than simple highlights. This is expected,
as manually written hints explain the problem and point
to a solution, whereas automatic hints only highlight the
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TABLE 5
Mean responses to the post-experiment survey (1 = no, 5 = yes)

Question GrouP
None Automatic Manual
1. Did you find CodeQ easy to use? 4.69 4.70 5.00
2. Did CodeQ help you learn Prolog? | 4.69 4.70 4.88
3. Did you find the feedback useful? | 4.08 3.90 4.43
4. Was the feedback ever unclear? 2.46 3.20 2.43

problematic areas. The student is left the non-trivial task of
understanding the error.

The open-ended questions asked about which aspects of
CodeQ the students found most useful, and what could be
improved. Positive comments mainly related to ease of use
afforded by an integrated online application — no installation
is required, programs are automatically loaded into Prolog
interpreter, and per-problem test cases allowing students to
easily determine whether a solution is correct.

Suggested improvements mainly concerned usability
problems in the current version of the application. Most
commonly raised issues include: cumbersome access to
solutions to completed problems, no indication which test
case(s) have failed, and the limited functionality of the
Prolog engine compared to a locally installed interpreter.

6 DiscussiON

Our results indicate that highlighting erroneous code frag-
ments can indeed serve as useful feedback that helps stu-
dents find and correct errors. This finding agrees with our
in-class experience, where we often observed students hav-
ing difficulty locating problematic parts in a misbehaving
program. Highlights direct their debugging efforts and re-
duce the time needed to discover the mistake. Furthermore,
highlighting incorrect fragments also indicates which parts
of the program are already correct, providing a degree of
assurance that the student is on the right path.

Somewhat surprisingly, hand-written explanations re-
ceived by the manual group did not reduce the average
problem-solving time any more than automatic hints. A
possible reason is that these explanations require some time
to read and understand (and the student still needs to
actually locate the error) which would increase the total
solving time.

On the other hand, students in the manual group did
submit fewer incorrect programs before finding a solution,
though the difference was not statistically significant. This
is likely because manual hints actually explained errors and
directed the student towards a solution, while automatic
hints only highlighted suspect fragments. Students still had
to figure out what the error was and how to fix it, and often
needed more than one attempt to do so.

We observed that some students resort to tinkering when
faced with a buggy program — making small modifications
to the program in hope of stumbling onto a solution. Auto-
matic testing and hints might have either positive or nega-
tive effects in such cases: they can serve as a starting point to
motivate a more systematic approach to debugging, or they
can encourage random tinkering by limiting the range and
number of variations a student has to try. Such undesired
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behavior may be discouraged by appropriate prompts from
the tutor [29]]. For example, a tutor could advise students to
run their programs in the interpreter and suggest relevant
inputs to try. These problems are however out of scope for
the present paper.

Like previous studies, our experiment has also demon-
strated the huge variability of student programs. For in-
stance, the canonical solution for the problem palindrome
uses the list-reversal predicate rev and fits in a single line:

palindrome (L) :—- rev(L,L).

Almost 50 students attempted this problem, and over 40
submitted a working program. In total we received — after
normalizing white space and variable names — 166 distinct
submissions. Only five of those programs were submitted
by more than one student, and the remaining 161 programs
were unique (i.e. appeared in a single attempt). These results
are particularly surprising because the problem rev directly
precedes palindrome.

Most data-driven programming tutors generate feedback
for an incorrect program based on what previous students
did after submitting the same program. This approach fails
when a program is encountered that has not been observed
before. This problem may be alleviated by using canonical-
ization, or simply by collecting many solution traces.

Using rewrite rules, however, we can debug novel pro-
grams without relying on language-specific transforma-
tions. In this sense, rewrites represent generic program-
ming actions that are not tied to specific submissions. Since
rewrites are considered locally, we were able to extract from
only a few hundred attempts rewrite rules that allow us to
fix many common programming errors.

We have shown that even simple non-verbal feedback
can be effective. Such feedback can be generated by a
conceptually simple method, requiring very little language-
specific knowledge. No canonicalization is done beyond
renaming identifiers, which can be done in a generic fashion
by adding scope information to the parser.

Regardless of hints, we observed that students tend to
persist longer and solve more problems when working in
the online environment compared to the traditional setup
(using an ordinary text editor and Prolog interpreter). Based
on responses to the open-ended survey questions this can
mostly be attributed to the testing functionality. Test cases
provide a clear goal for the student, and the system is able
to confirm when their program is correct.

We have shown that both manual and automatic hints
affect students’ problem-solving. However, further exper-
iments are required in order to determine the extent of
these effects and to better understand how different kinds of
hints influence learning. To measure learning gains directly,
students’ skills should be tested before and after a tutoring
session in a controlled environment, with similar problems
used both for tutoring and testing.

6.1 Future Directions

While our implementation of automatic debugging in a
programming tutor demonstrates the usefulness of rewrite
rules, many questions remain open for further research. We
outline some of the main ideas here.
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When debugging a program, no heuristic is used to
estimate the distance to a solution. A crude approach would
be to estimate the correctness of a program from the number
of passed tests, or the syntactic distance to the nearest
solution. While many features could be defined to better
approximate distance to solution (e.g. number of clauses
and goals, or the use of recursion), finding a language-
independent heuristic for guiding the debugging process is
an interesting challenge.

Most examples of incorrect programs in this paper con-
tain bugs that can be localized to a single fragment. More in-
volved bugs require two or more rewrites to fix. A common
example in Prolog is placing a negated goal too early in the
program. Fixing this bug requires two rewrites: removing
the goal from the current location and reinserting it at a later
point. While our debugging method applies each rewrite
independently, it could be extended to consider common
sequences of rewrites.

Rewrite rules are extracted separately for each problem.
By comparing rules between problems we could discover
common misconceptions, allowing us to categorize pro-
gramming problems according to typical errors. This would
enable a tutor to recommend problems based on errors
made by a particular student, implementing the outer-loop
functionality of an ITS [4].

Manually coding hints for CodeQ was a challenging task
— despite many years of teaching experience, it is far from
trivial to recall all the mistakes students make. By group-
ing incorrect programs according to sequences of rewrites
required to fix them, we could automatically generate a
list of common mistakes for each problem, together with
actual examples of corresponding student submissions. This
information would be very helpful when manually author-
ing feedback. Another option would be for instructors to
annotate each rewrite (or combination of rewrites) with
explanatory messages for students when that rewrite is used
to fix their program.

Generated rewrite sequences were only used to highlight
problematic code fragments. In order to provide expla-
nations in natural language, some domain knowledge is
required. Templates could for example be used to generate
feedback based on the tokens touched by the sequence of
rewrites — for example, “variable Head should not appear in
the recursive call to rev”.

To compare the efficacy of automatic and manual hints
we have limited feedback in each experimental group to
one or the other type of hints. The two types differ greatly
in content and presentation, however: automatic hints help
with locating bugs, while manual hints focus on explaining
the error and leave it up to the student to find it. Now that
we have established that hints can be useful, we will try
to determine in which situations each type can provide the
most benefit.

For example, some students might prefer explanations,
which provide some clues but still allow the students to dis-
cover the concrete errors themselves. Other, less motivated
students would perhaps be better served by highlights,
which provide an immediate starting point for debugging
and might keep them from getting frustrated. Finally, both
types of hints could be provided in tandem, such as by only
showing the explanation at first, and then displaying the
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highlights on demand.

We have implemented our approach first for Prolog in
order to take advantage of available problem-solving data.
Our method can easily be ported to other programming
languages. Further testing is needed, however, to determine
how well it would perform for other commonly taught
languages such as Python or Java, where programs tend to
be longer and more variable.

7 CONCLUSION

We have described a novel formalization of programming
based on rewrite rules. Our approach represents the process
of writing a program as a sequence of atomic operations
or rewrites. Based on this model we developed a method
for automatic program debugging and incorporated this
method into an online programming environment.

Through a limited in-class study we have shown that
useful feedback can be generated in a programming tutor
without using language-specific techniques like canonical-
ization. Even the rudimentary highlights presented to the
automatic group had a significant effect on the time needed
to reach a solution. How to use rewrite rules to generate
and present feedback in an optimal way remains an open
question for future research.

We believe the most interesting contribution of this
paper is the method for automatically extracting useful
rewrite rules from programmers’ traces. This can be viewed
as a way of automatically modeling human thinking when
writing programs.

Rewrite rules allow us to follow student actions di-
rectly, while still carrying more meaning than character-
level actions. Rewrite rules are thus the generic terms that
can be used to compare actions from different students’
traces. Despite the rudimentary nature of these rules — they
operate on the level of text, with no awareness of language
semantics — we therefore believe they have the potential to
shed some light on the cognitive processes in programming.
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