summaryrefslogtreecommitdiff
path: root/aied2018/patterns.tex
diff options
context:
space:
mode:
Diffstat (limited to 'aied2018/patterns.tex')
-rw-r--r--aied2018/patterns.tex17
1 files changed, 8 insertions, 9 deletions
diff --git a/aied2018/patterns.tex b/aied2018/patterns.tex
index 4edd981..b273f8d 100644
--- a/aied2018/patterns.tex
+++ b/aied2018/patterns.tex
@@ -9,7 +9,7 @@ In this work we used TREs to encode (only) child and sibling relations in ASTs.
\item the node \pattern{b} has three children: \pattern{d}, followed by any node, followed by \pattern{e}.
\end{itemize}
-Figure \ref{fig:tre-example} shows one instance of a matching tree, with arrows indicating the pattern. Analogous to ordinary regular expressions, caret (\texttt{\textbf{\textasciicircum}}) and dollar sign (\texttt{\$}) anchor a node to be respectively the first or last child of its parent. A period (\texttt{\textbf{.}}) represents a wildcard that matches any one node.
+Figure~\ref{fig:tre-example} shows one instance of a matching tree, with arrows indicating the pattern. Analogous to ordinary regular expressions, caret (\texttt{\textbf{\textasciicircum}}) and dollar sign (\texttt{\$}) anchor a node to be respectively the first or last child of its parent. A period (\texttt{\textbf{.}}) is a wildcard that matches any node.
\begin{figure}[htbp]
\centering
@@ -34,7 +34,7 @@ Figure \ref{fig:tre-example} shows one instance of a matching tree, with arrows
\path[-{Latex[length=1.5mm,width=1mm]},thick,relative,blue] (b) edge[transform canvas={xshift=1.1mm,yshift=0.2mm}] (e);
\draw[opacity=0] (b) -- node[anchor=west,thick,blue,opacity=1,font=\scriptsize,transform canvas={xshift=0mm,yshift=1mm}] {\texttt{\$}} (e);
\end{forest}
- \caption{A tree with a pattern (in blue besides the edges). An arrow $x→y$ indicates that node $x$ has a child $y$. The shorter line \pattern{b}—\pattern{g} means that the child can be any node. Anchors \texttt{\textbf{\textasciicircum}} and \texttt{\$} mean that the pattern will match only the first or last child.}
+ \caption{A tree matching a pattern (in blue besides the edges). In the pattern, an arrow $x→y$ means that node $x$ has a child $y$. A shorter line without an arrowhead (e.g. \pattern{b}—\pattern{g}) indicates a wildcard, where the child can be any node. Anchors \texttt{\textbf{\textasciicircum}} and \texttt{\$} mean that the pattern will match only the first or last child.}
\label{fig:tre-example}
\end{figure}
@@ -47,10 +47,9 @@ def divisors(n):
print(d)
\end{Verbatim}
-Figure \ref{fig:patterns-example} shows the simplified AST for this program, with two patterns overlaid. As described below, we construct our TREs automatically from certain subsets of nodes in the AST. The dashed pattern in Fig. \ref{fig:patterns-example} was induced from the control-flow nodes in the program \cite{hovemeyer2016control}, while the solid pattern was induced from a pair of leaf nodes that represent the same variable.
+Figure~\ref{fig:patterns-example} shows the simplified AST for this program, with two patterns overlaid. As described below, we construct our TREs automatically from certain subsets of nodes in the AST. The dashed pattern in Fig.~\ref{fig:patterns-example} was induced from the control-flow nodes in the program, while the solid pattern was induced from a pair of leaf nodes that represent the same variable.
-
-\begin{figure}[htbp]
+\begin{figure}[htb]
\centering
\begin{forest}
for tree={
@@ -136,22 +135,22 @@ While the pattern encoding control flow is correct, the second pattern describes
\subsection{Constructing patterns}
-Patterns are extracted automatically from student programs. To construct each pattern, we select a subset of nodes in the AST. Then we walk the tree from each selected node to the root and include all nodes along those paths.
+Patterns are extracted automatically from student programs. We first canonicalize each program~\cite{rivers2015data-driven} using code from ITAP\footnote{Available at \url{https://github.com/krivers/ITAP-django}.}. To construct TREs describing individual patterns, we select a subset of nodes in the AST, and walk the tree from each selected node to the root, including all nodes along those paths.
Depending on node type we also include some nodes adjacent to such paths. For each comparison and unary/binary expression on the path we include the corresponding operator. For function definitions and calls we include the function name. Finally, in all argument lists we include the anchors (\textbf{\texttt{\textasciicircum}}~and~\code{\$}) and a wildcard (\textbf{\texttt{.}}) for each argument not on the path. This allows our TREs to discriminate between e.g. the first and second argument to a function.
-While pattern extraction is completely automated, we have manually defined the kinds of node subsets that are selected. After analyzing solutions to several programming problems, we decided to use the following kinds of patterns. Figure \ref{fig:patterns-example} shows patterns based on the first two items.
+While pattern extraction is completely automated, we have manually defined the kinds of node subsets that are selected. After analyzing solutions to several programming problems, we decided to use the following kinds of patterns. Figure~\ref{fig:patterns-example} shows two examples of the first two kinds of patterns.
\begin{enumerate}
\item
We select each pair of leaf nodes referring to the same variable.
\item
-For each control-flow node $n$ we construct a pattern from the set $\{n\}$; we do the same for each \textsf{Call} node.
+For each control-flow node $n$ we construct a pattern from the set $\{n\}$; we do the same for each \textsf{Call} node representing a function call.
\item
For each expression (such as \code{(F-32)*5/9}) we select the different combinations of literal and variable nodes in the expression. In these patterns we include at most one node referring to a variable.
\end{enumerate}
-We found that patterns constructed from such nodesets are useful for discriminating between programs. As we show in Sect. \ref{sec:interpreting-rules}, they are also easily interpreted in terms of bugs and strategies for a given problem.
+We found that patterns constructed from such nodesets are useful for discriminating between programs. As we show in Sect.~\ref{sec:interpreting-rules}, they are also easily interpreted in terms of bugs and strategies for a given problem. Note that in any pattern constructed in this way, all \textsf{Var} nodes refer to the same variable, simplifying interpretation.
\subsection{Evaluating patterns}