1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
|
import numpy as np
import pandas
from math import ceil, floor
from sklearn.model_selection import train_test_split
from sklearn import svm
from sklearn.model_selection import KFold, StratifiedKFold, permutation_test_score
from sklearn import linear_model
from sklearn.svm import SVC
import pickle
import matplotlib.pyplot as plt
import numpy.fft as fft
from sklearn import datasets
class MyOVBox(OVBox):
def __init__(self):
OVBox.__init__(self)
# Names of CSV files
self.signalFileName = ""
self.stimFileName = ""
# Name of Save File
self.saveFileName = ""
# other variables
self.windowSize = 0 # window size in ms
self.numOfPreviousWindowsAsOne = 0 # number of windows before actual stimulation to be marked as 1
self.numOfWindowsBefore = 0 # number of windows before those marked as 1, to be marked as 0
self.numOfWindowsAfter = 0 # number of windows after those marked as 1, to be marked as 0
def filter_signal(self, sampleRate, numberOfSamplesWindow, stimulationTimes, splittedSignal):
""" returns tuple of filtered (signal chunks, classes) """
splittedSignal_filtrd = []
classes_filtrd = []
temp_classes = np.zeros(len(splittedSignal))
for stim in stimulationTimes:
index = int(floor(stim*sampleRate/numberOfSamplesWindow))
temp_classes[index] = 1
for i in range(1, self.numOfPreviousWindowsAsOne):
temp_classes[index-i] = 1
tmp_cls_winds = temp_classes[(index - self.numOfPreviousWindowsAsOne - self.numOfWindowsBefore):index+self.numOfWindowsAfter]
tmp_sig_winds = np.concatenate(splittedSignal[(index - self.numOfPreviousWindowsAsOne - self.numOfWindowsBefore):index+self.numOfWindowsAfter])
if len(tmp_sig_winds)/len(tmp_cls_winds)!=numberOfSamplesWindow: # if np.array_split does not split in equal windows
tmp_sig_winds = np.lib.pad(tmp_sig_winds, ((0, int(len(tmp_cls_winds)*numberOfSamplesWindow-len(tmp_sig_winds))),(0, 0)), 'edge') # pad with same values on end of array
classes_filtrd.extend(tmp_cls_winds)
splittedSignal_filtrd.extend(np.array_split(tmp_sig_winds, len(tmp_cls_winds)))
return (splittedSignal_filtrd, classes_filtrd)
def avg_k_fold(self, data, classes, k=4):
""" return average CA of k-fold cross validation """
avg_val = 0
kf = KFold(n_splits=k)
for train, test in kf.split(data):
clf = svm.SVC(kernel='linear', C=1).fit(data[train], classes[train])
cur_score = clf.score(data[test], classes[test])
avg_val += cur_score
# print cur_score
return avg_val/k
def permutation_significance_classification_score(self, X, y, k_folds=4):
n_classes = np.unique(y).size
svm = SVC(kernel='linear')
cv = StratifiedKFold(k_folds)
score, permutation_scores, pvalue = permutation_test_score(svm, X, y, scoring="accuracy", cv=cv, n_permutations=200, n_jobs=1)
print("Classification score %s (pvalue : %s)" % (score, pvalue))
plt.hist(permutation_scores, 20, label='Permutation scores')
ylim = plt.ylim()
plt.plot(2 * [score], ylim, '--g', linewidth=3,
label='Classification Score'
' (pvalue %s)' % pvalue)
plt.plot(2 * [1. / n_classes], ylim, '--k', linewidth=3, label='Luck')
plt.ylim(ylim)
plt.legend()
plt.xlabel('Score')
plt.show()
def initialize(self):
# Names of CSV files
self.signalFileName = self.setting['InputCSVSignal']
self.stimFileName = self.setting['InputCSVStimulations']
# Name of Save File
self.saveFileName = self.setting['SaveFile']
# other variables
self.windowSize = int(self.setting['WindowSize (ms)']) # in ms
self.numOfPreviousWindowsAsOne = int(self.setting['NumOfPrevWindows'])
self.numOfWindowsBefore = int(self.setting['NumOfWindowsBefore'])-1
self.numOfWindowsAfter = int(self.setting['NumOfWindowsAfter'])+1
self.k_folds = int(self.setting['K-folds'])
print "Reading files..."
# read CSV files
signalArray = pandas.read_csv(self.signalFileName, delimiter=";", encoding="utf-8-sig")
stimsArray = pandas.read_csv(self.stimFileName, delimiter=";", encoding="utf-8-sig")
print "Files read!"
# sort information from tables (pandas dataframe)
time = signalArray['Time (s)']
electrodes = signalArray.iloc[:, 1:signalArray.shape[1]-1]
sampleRate = signalArray['Sampling Rate'][0]
stimulationTimes = stimsArray['Time (s)']
numberOfSamplesWindow = floor(self.windowSize / ((1/sampleRate)*1000)) # number of samples for approximately self.windowSize ms
splittedSignal = np.array_split(electrodes, ceil(len(time)/numberOfSamplesWindow)) # split signal into chunks of specified length
s_c = self.filter_signal(sampleRate, numberOfSamplesWindow, stimulationTimes, splittedSignal) # filter signal and return sparsed version of chunks and assign classes
splittedSignal_filtrd = s_c[0]
classes_filtrd = s_c[1]
splittedSignal_filtrd_means = np.array(np.mean(splittedSignal_filtrd, axis=1)) # for each window calculate mean value
# additional attributes could be added besides splittedSignal_filtrd_means
classes_filtrd = np.array(classes_filtrd)
# print average k-fold CA
print "Average " + str(self.k_folds) + "-folds value: " + str(self.avg_k_fold(splittedSignal_filtrd_means, classes_filtrd, k=self.k_folds))
#self.permutation_significance_classification_score(splittedSignal_filtrd_means, classes_filtrd, k_folds=2) # k_folds=2, last long if k is bigger
if self.saveFileName:
clf = svm.SVC(kernel='linear', C=1).fit(splittedSignal_filtrd_means, classes_filtrd)
clf.fit(splittedSignal_filtrd_means, classes_filtrd)
print "Saving to pickle file: " + self.saveFileName
pickle.dump(clf, open(self.saveFileName, 'wb'))
print "Learned score: " + str(clf.score(splittedSignal_filtrd_means, classes_filtrd))
# send finish stimulation output (for OpenViBE)
self.finishBySendingStimulation(32774) # OVTK_StimulationId_TrialStop code
def finishBySendingStimulation(self, stimulationCode):
stimSetFinish = OVStimulationSet(self.getCurrentTime(), self.getCurrentTime()+1./self.getClock())
stimSetFinish.append(OVStimulation(stimulationCode, self.getCurrentTime(), 0.))
self.output[0].append(stimSetFinish)
def process(self):
return
def uninitialize(self):
# nop
return
box = MyOVBox()
|