1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
|
#!/usr/bin/python3
import collections
import math
from .action import expand, parse
from .graph import Node
from prolog.util import normalized, rename_vars, stringify, tokenize
from .util import get_line, avg, logistic
# Parse the sequence of actions in [trace] and return a directed acyclic graph
# representing development history. Each node represents a particular version
# of some line, and each edge represents a "line edit" (contiguous sequence of
# inserts/removes within a single line).
# Return a list of nodes with root as the first element. Also return sets of
# submissions (user-tested program versions) and queries in this attempt.
def trace_graph(trace):
# Return values.
nodes = [Node([0, 0, ()])] # Node data: rank (Y), line no. (X), and tokens.
submissions = set() # Program versions at 'test' actions.
queries = set() # Queries run by the student.
# State variables.
leaves = {0: nodes[0]} # Current leaf node for each line.
rank = 1 # Rank (order / y-position) for the next node.
code_next = '' # Program code after applying the current action.
done = False # Set to True on first correct version.
# Parse trace actions and ensure there is a separate action for each
# inserted/removed character.
try:
actions = parse(trace)
expand(actions)
except:
# Only a few traces fail to parse, so just skip them.
actions = []
for action_id, action in enumerate(actions):
code = code_next
code_next = action.apply(code)
if action.type == 'test':
submissions.add(code)
if action.total == action.passed:
done = True
elif action.type == 'solve' or action.type == 'solve_all':
queries.add(action.query)
elif action.type == 'insert' or action.type == 'remove':
# Ignore edits after the first correct version.
if done:
continue
# Number of the changed line.
line = code[:action.offset].count('\n')
# Current leaf node for this line.
parent = leaves[line]
# Tokens in this line after applying [action].
tokens_next = tuple(tokenize(get_line(code_next, line)))
# If a new node is inserted, clone each leaf into the next rank.
# This makes it easier to print the graph for graphviz; when
# analyzing the graph, duplicate nodes without siblings should be
# ignored.
new_leaves = {}
if action.text == '\n':
if action.type == 'insert':
tokens_next_right = tuple(tokenize(get_line(code_next, line+1)))
child_left = Node([rank, line, tokens_next])
parent.add_out(child_left)
child_right = Node([rank, line+1, tokens_next_right])
parent.add_out(child_right)
# Create new leaf nodes.
for i, leaf in leaves.items():
if i < line:
new_leaves[i] = Node([rank, i, leaf.data[2]])
leaf.add_out(new_leaves[i])
elif i > line:
new_leaves[i+1] = Node([rank, i+1, leaf.data[2]])
leaf.add_out(new_leaves[i+1])
new_leaves[line] = child_left
new_leaves[line+1] = child_right
elif action.type == 'remove':
parent_right = leaves[line+1]
child = Node([rank, line, tokens_next])
parent_right.add_out(child)
parent.add_out(child)
# Create new leaf nodes.
for i, leaf in leaves.items():
if i < line:
new_leaves[i] = Node([rank, i, leaf.data[2]])
leaf.add_out(new_leaves[i])
elif i > line+1:
new_leaves[i-1] = Node([rank, i-1, leaf.data[2]])
leaf.add_out(new_leaves[i-1])
new_leaves[line] = child
else:
# Skip the node if the next action is insert/remove (except \n)
# on the same line.
if action_id < len(actions)-1:
action_next = actions[action_id+1]
if action_next.type in ('insert', 'remove'):
line_next = code_next[:action_next.offset].count('\n')
if action_next.text != '\n' and line == line_next:
continue
# Skip the node if it is the same as the parent.
if tokens_next == parent.data[2]:
continue
child = Node([rank, line, tokens_next])
parent.add_out(child)
# Create new leaf nodes.
for i, leaf in leaves.items():
if i != line:
new_leaves[i] = Node([rank, i, leaf.data[2]])
leaf.add_out(new_leaves[i])
new_leaves[line] = child
leaves = new_leaves
nodes += leaves.values()
rank += 1
return nodes, submissions, queries
# Return a set of edits that appear in the trace_graph given by [nodes].
def graph_edits(nodes):
edits = set()
for a in nodes:
a_data = a.data[2]
for b in a.eout:
b_data = b.data[2]
# Normalize a → b into start → end. Reuse variable names from a
# when normalizing b.
var_names = {}
start = normalized(a_data, var_names)
end = normalized(b_data, var_names)
if start == end:
continue
if not end and len(a.eout) > 1:
continue
# Disallow edits that insert a whole rule (a → …:-…).
# TODO improve trace_graph to handle this.
if 'FROM' in [t.type for t in end[:-1]]:
continue
edits.add((start, end))
return edits
# Build an edit graph for each trace and find "meaningful" (to be defined)
# edits. Return a dictionary of edits and their frequencies, and also
# submissions and queries in [traces].
def get_edits_from_traces(traces):
# Return values: counts for observed edits, lines, submissions and queries.
edits = collections.Counter()
submissions = collections.Counter()
queries = collections.Counter()
# Counts of traces where each line appears as a leaf / any node.
n_leaf = collections.Counter()
n_all = collections.Counter()
for trace in traces:
nodes, trace_submissions, trace_queries = trace_graph(trace)
# Update the submissions/queries counters (use normalized variables).
for submission in trace_submissions:
code = stringify(rename_vars(tokenize(submission)))
submissions[code] += 1
for query in trace_queries:
code = stringify(rename_vars(tokenize(query)))
queries[code] += 1
# Update the edit and leaf/node counters.
edits.update(graph_edits(nodes))
n_leaf.update(set([normalized(n.data[2]) for n in nodes if n.data[2] and not n.eout]))
n_all.update(set([normalized(n.data[2]) for n in nodes if n.data[2]]))
# Discard edits that only occur in one trace.
singletons = [edit for edit in edits if edits[edit] < 2]
for edit in singletons:
del edits[edit]
# Find the probability of each edit a → b.
for (a, b), count in edits.items():
p = 1.0
if a:
p *= 1 - (n_leaf[a] / (n_all[a]+1))
if b:
b_normal = normalized(b)
p *= n_leaf[b_normal] / (n_all[b_normal]+1)
if a and b:
p = math.sqrt(p)
edits[(a, b)] = p
# Tweak the edit distribution to improve search.
avg_p = avg(edits.values())
for edit, p in edits.items():
edits[edit] = logistic(p, k=3, x_0=avg_p)
return edits, submissions, queries
def classify_edits(edits):
inserts = {}
removes = {}
changes = {}
for (before, after), cost in edits.items():
if after and not before:
inserts[after] = cost
elif before and not after:
removes[before] = cost
else:
changes[(before, after)] = cost
return inserts, removes, changes
if __name__ == '__main__':
import os
import pickle
import django
# Load django models.
os.environ['DJANGO_SETTINGS_MODULE'] = 'webmonkey.settings'
django.setup()
from django.contrib.auth.models import User
from tutor.models import Attempt, Problem
edits = {}
submissions = {}
queries = {}
for problem in Problem.objects.all():
print(problem.name)
pid = problem.pk
attempts = Attempt.objects.filter(problem=problem, done=True) \
.exclude(user__username='admin') \
.exclude(user__username='test')
traces = [a.trace for a in attempts]
edits[pid], submissions[pid], queries[pid] = get_edits_from_traces(traces)
pickle.dump((edits, submissions, queries), open('edits.pickle', 'wb'))
|