summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorTimotej Lazar <timotej.lazar@fri.uni-lj.si>2018-02-06 14:50:29 +0100
committerTimotej Lazar <timotej.lazar@fri.uni-lj.si>2018-02-06 14:50:29 +0100
commit9d0c7d6ce21334f107443c4864c1cf8836bf5a6f (patch)
tree8437ecc49c8b60a32a6971d2b32ebb57a1d25232
parent1d7422f5b919d5a9d1c2cc69ab00ee50bc9a9c25 (diff)
Optimize table
-rw-r--r--aied2018/evaluation.tex5
1 files changed, 2 insertions, 3 deletions
diff --git a/aied2018/evaluation.tex b/aied2018/evaluation.tex
index d74a4f5..205a521 100644
--- a/aied2018/evaluation.tex
+++ b/aied2018/evaluation.tex
@@ -1,7 +1,6 @@
-
\section{Evaluation, discussion, and further work}
-\setlength{\tabcolsep}{6pt}
+\setlength{\tabcolsep}{4.5pt}
\def\arraystretch{1.1}
\begin{table}[t]
\caption{Solving statistics, classification accuracy, and coverage of rules for several introductory Python problems. The second column shows the number of users attempting the problem. Columns 3 and 4 show the number of all / correct submissions. The next two columns show the classification accuracy for the majority and random-forest classifiers. The last three rows show percentages of covered examples: columns $n_p$ and $n$ contain covered incorrect programs (n-rules with presence of patterns and all n-rules), column $p$ contains the percentage of covered correct programs by p-rules.}
@@ -10,7 +9,7 @@
& & \multicolumn{2}{c|}{\textbf{Submissions}} & \multicolumn{2}{c|}{\textbf{CA}} & \multicolumn{3}{c}{\textbf{Coverage}} \\
\textbf{Problem} & \textbf{Users} & Total & Correct & Maj & RF & $n_p$ & $n$ & $p$ \\
\hline
- \textsf{fahrenheit\_to\_cel}& 521 & 1177 & 495 & 0.579 & 0.933 & 0.708 & 0.935 & 0.867 \\
+ \textsf{fahrenheit\_to\_celsius}& 521 & 1177 & 495 & 0.579 & 0.933 & 0.708 & 0.935 & 0.867 \\
%\textsf{pythagorean\_theorem}& 349 & 669 & 317 & 0.499 & 0.809 \\
\textsf{ballistics}& 248 & 873 & 209 & 0.761 & 0.802 & 0.551 & 0.666 & 0.478 \\
\textsf{average}& 209 & 482 & 186 & 0.614 & 0.830 & 0.230 & 0.338 & 0.618 \\